Skip to main content
Log in

Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

This first association analysis between plant architecture and BR candidate genes in sorghum suggests that natural allelic variation has significant and pleiotropic effects on plant architecture phenotypes.

Abstract

Sorghum bicolor (L) Moench is a self-pollinated species traditionally used as a staple crop for human consumption and as a forage crop for livestock feed. Recently, sorghum has received attention as a bioenergy crop due to its water use efficiency and biomass yield potential. Breeding for superior bioenergy-type lines requires knowledge of the genetic mechanisms controlling plant architecture. Brassinosteroids (BRs) are a group of hormones that determine plant growth, development, and architecture. Biochemical and genetic information on BRs are available from model species but the application of that knowledge to crop species has been very limited. A candidate gene association mapping approach and a diverse sorghum collection of 315 accessions were used to assess marker-trait associations between BR biosynthesis and signaling genes and six plant architecture traits. A total of 263 single nucleotide polymorphisms (SNPs) from 26 BR genes were tested, 73 SNPs were significantly associated with the phenotypes of interest and 18 of those were associated with more than one trait. An analysis of the phenotypic variation explained by each BR pathway revealed that the signaling pathway had a larger effect for most phenotypes (R 2 = 0.05–0.23). This study constitutes the first association analysis between plant architecture and BR genes in sorghum and the first LD mapping for leaf angle, stem circumference, panicle exsertion and panicle length. Markers on or close to BKI1 associated with all phenotypes and thus, they are the most important outcomes of this study and will be further validated for their future application in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asami T, Min YK, Nagata N, Yamagishi K, Takatsuto S, Fujioka S, Murofushi N, Yamaguchi I, Yoshida S (2000) Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol 123:93–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, Chong K, Wang ZY (2007) Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA 104:13839–13844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Randoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Brown PJ, Rooney WL, Franks C, Kresovich S (2008) Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics 180:629–637

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown PJ, Myles S, Kresovich S (2011) Genetic support for phenotype-based racial classification in sorghum. Crop Sci 51:224–230

    Article  Google Scholar 

  • Casa AM, Pressoir G, Brown PJ, Mitchell SE, Rooney WL, Tuinstra MR, Franks CD, Kresovich S (2008) Community resources and strategies for association mapping in sorghum. Crop Sci 48:30–40

    Article  Google Scholar 

  • Choe S, Dilkes BP, Gregory BD, Ross AS, Yuan H, Noguchi T, Fujioka S, Takatsuto S, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999a) The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol 119:897–907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier CP, Gregory BD, Ross AS, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999b) The Arabidopsis dwf7/ste1 mutant is defective in the ∆7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 2:207–221

    Google Scholar 

  • Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE (2002) Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3β-like kinase. Plant Physiol 130:1506–1515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clouse SD (1996) Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J 10:1–8

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD (2002) Brassinosteroid signaling: novel downstream components emerge. Curr Biol 12:R485–R487

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23:1219–1230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diella F, Haslam N, Chica C, Budd A, Michael S, Brown NP, Trave G, Gibson TJ (2008) Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci 13:6580–6603

    Article  CAS  PubMed  Google Scholar 

  • Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26:3–4

    Article  Google Scholar 

  • Ehsan H, Ray WK, Phinney B, Wang X, Huber SC, Clouse SD (2005) Interaction of Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase with a homolog of mammalian TGF-β receptor interacting protein. Plant J 43:251–261

    Article  CAS  PubMed  Google Scholar 

  • El Mannai Y, Shehzad T, Okuno K (2011) Variation in flowering time in sorghum core collection and mapping of QTLs controlling flowering time by association analysis. Genet Resour Crop Evol 58:983–989

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Thornberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Li J, Choi YH, Seto H, Takatsuto S, Noguchi T, Watanabe T, Kuriyama H, Yokota T, Chory J, Sakurai A (1997) The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell 11:1951–1962

    Article  Google Scholar 

  • Gabriel S, Ziaugra L, Tabbaa D (2009) SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet 60:2.12.1–2.12.16

    Google Scholar 

  • Gou X, Yin H, He K, Du J, Yi J, Xu S, Lin H, Clouse SD, Li J (2012) Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling. PLoS Genet 8:e1002452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gruszka D, Szarejko I, Maluszynski M (2011) Identification of barley DWARF gene involved in brassinosteroid synthesis. Plant Growth Regul 65:343–358

    Article  CAS  Google Scholar 

  • Guo H, Li L, Aluru M, Aluru S, Yin Y (2013) Mechanisms and networks for brassinosteroid regulated gene expression. Curr Opin Plant Biol 16:545–553

    Article  CAS  PubMed  Google Scholar 

  • Hamblin MT, Salas Fernandez MG, Casa AM, Mitchell SE, Paterson AH, Kresovich S (2005) Equilibrium processes cannot explain high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics 171:1247–1256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hao J, Yin Y, Fei SZ (2013) Brassinosteroid signaling network: implications on yield and stress tolerance. Plant Cell Rep 32:1017–1030

    Article  CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Harlan JR, De Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176

    Article  Google Scholar 

  • Hart GE, Schertz KF, Peng Y, Syed NH (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTL that control variation in tillering and other morphological characters. Theor Appl Genet 103:1232–1242

    Article  CAS  Google Scholar 

  • Hartwig T, Chuck GS, Fujioka S, Klempien A, Weizbauer R, Potluri DP, Choe S, Johal GS, Schulz B (2011) Brassinosteroid control of sex determination in maize. Proc Natl Acad Sci USA 108:19814–19819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hartwig T, Corvalan C, Best NB, Budka JS, Zhu JY, Choe S, Schulz B (2012) Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for Arabidopsis and maize. PLoS ONE 7:e36625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He JX, Gendron JM, Sun Y, Gampala SS, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hothorn M, Belkhadir Y, Dreux M, Dabi T, Noel JP, Wilson IA, Chory J (2011) Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature 474:467–471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Itoh T, Tanaka T, Barrero R, Yamasaki C, Fujii Y, Hilton PB, Antonio BA, Aono H, Apweiler R, Bruskiewich R, Bureau T, Burr F, Costa de Oliveira A, Fuks G, Habara T, Haberer G, Han B, Harada E, Hiraki AT, Hirochika H, Hoen D, Hokari H, Hosokawa S, Hsing YI, Ikawa H, Ikeo K, Imanishi T, Ito Y, Jaiswal P, Kanno M, Kawahara Y, Kawamura T, Kawashima H, Khurana JP, Kikuchi S, Komatsu S, Koyanagi KO, Kubooka H, Lieberherr D, Lin YC, Lonsdale D, Matsumoto T, Matsuya A, McCombie WR, Messing J, Miyao A, Mulder N, Nagamura Y, Nam J, Namiki N, Numa H, Nurimoto S, O’Donovan C, Ohyanagi H, Okido T, Oota S, Osato N, Palmer LE, Quetier F, Raghuvanshi S, Saichi N, Sakai H, Sakai Y, Sakata K, Sakurai T, Sato F, Sato Y, Schoof H, Seki M, Shibata M, Shimizu Y, Shinozaki K, Shinso Y, Singh NK, Smith-White B, Takeda J, Tanino M, Tatusova T, Thongjuea S, Todokoro F, Tsugane M, Tyagi AK, Vanavichit A, Wang A, Wing RA, Yamaguchi K, Yamamoto M, Yamamoto N, Yu Y, Zhang H, Zhao Q, Higo K, Burr B, Gojobori T, Sasaki T (2007) Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res 17:175–183

    Article  PubMed Central  PubMed  Google Scholar 

  • Jaillais Y, Horthorn M, Belhadir Y, Dabi T, Nimchik ZL, Meyerowitz EM, Chory J (2011) Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes Dev 25:232–237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang J, Zhang C, Wang X (2013) Ligand perception, activation, and early signaling of plant steroid receptor brassinosteroid insensitive 1. J Integr Plant Biol 55:1198–1211

    Article  CAS  PubMed  Google Scholar 

  • Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang JX, Burlingame AL, Wang ZY (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11:1254–1260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim TW, Guan S, Burlingame AL, Wang ZY (2011) The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Mol Cell 43:561–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klein RR, Rodriguez-Herrera R, Schlueter JA, Klein PE, Yu ZH, Rooney WL (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 102:307–319

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 1:2947–2948

    Article  Google Scholar 

  • Li J (2010) Regulation of the nuclear activities of brassinosteroid signaling. Curr Opin Plant Biol 13:540–547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    Article  CAS  PubMed  Google Scholar 

  • Li X, Tesso T, Yu J (2013) Genotype by environment interaction of sorghum flowering time. Kansas State University. https://pag.confex.com/pag/xxi/webprogram/Paper5338.html. Accessed 01 November 2013

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Makarevitch I, Thompson A, Muehlbauer GJ, Springer NM (2012) Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS ONE 7:e30798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mandava N (1988) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39:23–52

    Article  CAS  Google Scholar 

  • Mora-Garcia S, Vert G, Yin Y, Cano-Delgado A, Cheong H, Chory J (2004) Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev 18:448–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morillo S, Tax F (2006) Functional analysis of receptor-like kinases in monocots and dicots. Curr Opin Plant Biol 9:460–469

    Article  CAS  PubMed  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 2:453–548

    Article  Google Scholar 

  • Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE (2011) Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA 39:16469–16474

    Article  Google Scholar 

  • Myles S, Peiffer J, Brown P, Ersoz E, Zhang Z, Costich D, Buckler E (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nam KH, Li J (2004) The Arabidopsis transthyretin-like protein is a potential substrate of BRASSINOSTEROID-INSENSITIVE 1. Plant Cell 16:2406–2417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nordborg M, Tavaré S (2002) Linkage disequilibrium: what history has to tell us. Trends Genet 18:83–90

    Article  CAS  PubMed  Google Scholar 

  • Oeth P, Mistro G, Marnellos G, Shi T (2009) Qualitative and quantitative genotyping using single base primer extension coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MassARRAY). In: Komar AA (ed) Single nucleotide polymorphisms methods and protocols, 2nd edn. Humana Press, Cleveland, pp 307–343

    Chapter  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616

    Article  CAS  Google Scholar 

  • RIKEN Plant Hormone Research Network—Plant Science Center (2010) Brassinosteroid metabolomic pathway in Arabidopsis. In: Fujioka S, Shimada Y (eds) http://hormones.psc.riken.jp/pathway_br.shtml. Accessed 02 February 2014

  • Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuel Bioprod Biorefin 1:147–157

    Article  CAS  Google Scholar 

  • Ryu H, Kim K, Cho H, Hwang I (2010) Predominant actions of cytosolic BSU1 and nuclear BIN2 regulate subcellular localization of BES1 in brassinosteroid signaling. Mol Cells 29:291–296

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.r-project.org/ Accessed 05 Nov 2013

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105–109

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Morinaka Y, Fujioka S (2013) Genetic background influences brassinosteroid-related mutant phenotypes in rice. Am J Plant Sci 4:212–221

    Article  Google Scholar 

  • Salas Fernandez MG, Becraft PW, Yin Y, Lübberstedt T (2009) From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci 14:454–461

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute (2009) The SAS system for windows. Release 9.2. SAS Inst, Cary, NC

    Google Scholar 

  • She J, Han Z, Kim TW, Wang J, Cheng W, Chang J, Shi S, Yang M, Wang ZY, Chai J (2011) Structural insight into brassinosteroid perception by BRI1. Nature 474:472–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shehzad T, Hiroyoshi I, Kazutoshi O (2009) Genome-wide association mapping of quantitative traits in sorghum [Sorghum bicolor (L.) Moench] by using multiple models. Breed Sci 59:217–227

    Article  CAS  Google Scholar 

  • Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S (2001) Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 126:770–779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organ-specific expression of brassinosteorid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131(287):297

    Google Scholar 

  • Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7(Suppl 1):10.1–10.12

    Article  Google Scholar 

  • Sreeramulu S, Mostizky Y, Sunitha S, Shani E, Nahum H, Salomon D, Hayun LB, Gruetter C, Rauh D, Ori N, Sessa G (2013) BSKs are partially redundant positive regulators of brassinosteroid signaling in Arabidopsis. The Plant J 74:905–919

    Article  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genome-wide experiments. Proc Natl Acad Sci USA 100:9440–9445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sukumaran S, Xiang W, Bean SR, Pedersen JF, Kresovich S, Tuinstra MR, Tesso TT, Hamblin MT, Yu J (2012) Association mapping for grain quality in a diverse sorghum collection. The Plant Genome 5:126–135

    Article  CAS  Google Scholar 

  • Sun G, Zhu C, Kramer MH, Yang SS, Song W, Piepho HP, Yu J (2010) Variation explained in mixed-model association mapping. Heredity 105:333–340

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant Physiol, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang W, Yuan M, Wang R, Yang Y, Wang C, Oses-Prieto JA, Kim TW, Zhou HW, Deng Z, Gampala SS, Gendron JM, Jonassen EM, Lillo C, DeLong A, Burlingame AL, Sun Y, Wang ZY (2011) PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol 13:124–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thurber CS, Ma JM, Higgins RH, Brown PJ (2013) Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production. Gen Bio 14:R68

    Article  Google Scholar 

  • Tong H, Chu C (2012) Brassinosteroid signaling and application in rice. J Genet Genomics 39:3–9

    Article  CAS  PubMed  Google Scholar 

  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang HC, Torres QI, Ward JM, Murthy G, Zhang JY, Walker JC, Neff MM (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J 42:23–34

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chory J (2006) Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313:1118–1122

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2:505–513

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Kota U, He K, Blackburn K, Li J, Goshe MB, Huber SC, Clouse SD (2008) Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell 15:220–235

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yang C, Zhang C, Wang N, Lu D, Wang J, Zhang S, Wang ZX, Ma H, Wang X (2011) Dual role of BKI1 and 14-3-3 s in brassinosteroid signaling to link receptor with transcription factors. Dev Cell 21:825–834

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 20:2130–2145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu G, Wang X, Li X, Kamiya Y, Otegui, Chory J (2011) Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Sci Signal 4 172:ra29–ra29

    Google Scholar 

  • Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12:1591–1606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye H, Li L, Yin Y (2011) Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways. J Integr Plant Biol 53:455–468

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181–191

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005) A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249–259

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh-Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Xu Y, Guo S, Zhu J, Huan Q, Liu H, Wang L, Luo G, Wang X, Chong K (2012) Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet 8(4):e1002686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao B, Li J (2012) Regulation of brassinosteroid biosynthesis and inactivation. J Integr Plant Biol 54:746–759

    Article  CAS  PubMed  Google Scholar 

  • Zhiponova MK, Vanhoutte I, Boudolf V, Betti C, Dhondt S, Coppens F, Mylle E, Maes S, Gonzalez-Garcia MP, Cano-Delgado AI, Inze D, Beemster GT, De Veylder L, Russinova E (2013) Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. New Phytol 197:490–502

    Article  CAS  PubMed  Google Scholar 

  • Zhou A, Wang H, Walker JC, Li J (2004) BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. Plant J 40:399–409

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

  • Zhu JY, Sae-Seaw J, Wang ZY (2013) Brassinosteroid signaling. Development 140:1615–1620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zou G, Zhai G, Feng Q, Yan S, Wang A, Zhao Q, Shao J, Zhipeng Z, Zou J, Han B, Tao Y (2012) Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot 63:5451–5462

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Xiaochen Sun, for the development of R codes for the estimation of BLUPs; Dr. Jianming Yu, for his contribution to modify the SAS script to include multiple markers/genes in the mixed model and to RIKEN Plant Hormone Research Network—Plant Science Center, for the BR biosynthesis figure. This work was supported by the United States Department of Agriculture, National Institute of Food and Agriculture (Project #IOW05298), by the R.F. Baker Endowment, Iowa State University and by the National Secretary of Education, Science and Technology (SENESCYT), from the Republic of Ecuador.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This experiment complies with the current laws of the US where the experiment was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria G. Salas Fernandez.

Additional information

Communicated by Hai-Chun Jing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 924 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantilla Perez, M.B., Zhao, J., Yin, Y. et al. Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor . Theor Appl Genet 127, 2645–2662 (2014). https://doi.org/10.1007/s00122-014-2405-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2405-9

Keywords

Navigation