Skip to main content
Log in

Haplotype variability and identification of new functional alleles at the Rdg2a leaf stripe resistance gene locus

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The barley Rdg2a locus confers resistance to the leaf stripe pathogen Pyrenophora graminea and, in the barley genotype Thibaut, it is composed of a gene family with three highly similar paralogs. Only one member of the gene family (called as Rdg2a) encoding for a CC-NB-LRR protein is able to confer resistance to the leaf stripe isolate Dg2. To study the genome evolution and diversity at the Rdg2a locus, sequences spanning the Rdg2a gene were compared in two barley cultivars, Thibaut and Morex, respectively, resistant and susceptible to leaf stripe. An overall high level of sequence conservation interrupted by several rearrangements that included three main deletions was observed in the Morex contig. The main deletion of 13,692 bp was most likely derived from unequal crossing over between Rdg2a paralogs leading to the generation of a chimeric Morex rdg2a gene which was not associated to detectable level of resistance toward leaf stripe. PCR-based analyses of genic and intergenic regions at the Rdg2a locus in 29 H. vulgare lines and one H. vulgare ssp. spontaneum accession indicated large haplotype variability in the cultivated barley gene pool suggesting rapid and recent divergence at this locus. Barley genotypes showing the same haplotype as Thibaut at the Rdg2a locus were selected for a Rdg2a allele mining through allele re-sequencing and two lines with polymorphic nucleotides leading to amino acid changes in the CC-NB and LRR encoding domains, respectively, were identified. Analysis of nucleotide diversity of the Rdg2a alleles revealed that the polymorphic sites were subjected to positive selection. Moreover, strong positively selected sites were located in the LRR encoding domain suggesting that both positive selection and divergence at homologous loci are possibly representing the molecular mechanism for the generation of high diversity at the Rdg2a locus in the barley gene pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arru L, Faccini N, Govoni C, Cattivelli L, Pecchioni N, Delogu G, Stanca AM, Valè G (2003a) The PCR-based marker MWG2018 linked to the RDG2A leaf stripe resistance gene is a useful tool for assessing barley resistance in breeding programs. Crop Sci 43:1036–1042

    Article  CAS  Google Scholar 

  • Arru L, Francia E, Pecchioni N (2003b) Isolate-specific QTLs of resistance to leaf stripe (Pyrenophora graminea) in the Steptoe × Morex spring barley cross. Theor Appl Genet 106:668–675

    PubMed  CAS  Google Scholar 

  • Bella J, Hindle KL, McEwan PA, Lovell SC (2008) The leucine-rich repeat structure. Cell Mol Life Sci 65:2307–2333

    Article  PubMed  CAS  Google Scholar 

  • Bhullar NK, Streetb K, Mackayc M, Yahiaoui N, Keller B (2009) Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc Natl Acad Sci USA 106:9519–9524

    Article  PubMed  CAS  Google Scholar 

  • Bhullar NK, Zhang Z, Wicker T, Keller B (2010) Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: a large scale allele mining project. BMC Plant Biol 10:88

    Article  PubMed  Google Scholar 

  • Bieri S, Mauch S, Shen QH, Peart J, Devoto A, Casais C, Ceron F, Schulze S, Steinbiß HH, Shirasu K, Schulze-Lefert P (2004) RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumuation for effective resistance. Plant Cell 16:3480–3495

    Article  PubMed  CAS  Google Scholar 

  • Biselli C, Urso S, Bernardo L, Tondelli A, Tacconi G, Martino V, Grando S, Valè G (2010) Identification and mapping of the leaf stripe resistance gene Rdg1a in Hordeum spontaneum. Theor Appl Genet 120:1207–1218

    Article  PubMed  CAS  Google Scholar 

  • Bulgarelli D, Collins NC, Tacconi G, Dall’Aglio E, Brueggeman R, Kleinhofs A, Stanca AM, Valè G (2004) High-resolution genetic mapping of the leaf stripe resistance gene Rdg2a in barley. Theor Appl Genet 108:1401–1408

    Article  PubMed  CAS  Google Scholar 

  • Bulgarelli D, Biselli C, Collins NC, Consonni G, Stanca AM, Schulze-Lefert P, Valè G (2010) The CC-NB-LRR-type Rdg2a resistance gene confers immunity to the seed-borne barley leaf stripe pathogen in the absence of hypersensitive cell death. PLoS One 5:e12599

    Article  PubMed  Google Scholar 

  • Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP (2008) Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132:449–462

    Article  PubMed  CAS  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539–548

    Article  PubMed  CAS  Google Scholar 

  • Dodds PN, Lawrence GJ, Ellis JG (2001) Six amino acid changes confined to the leucine-rich repeat β-strand/β-turn motif determine the difference between P and P2 rust resistance specificities in flax. Plant Cell 13:163–178

    PubMed  CAS  Google Scholar 

  • Ellis JG, Lawrence GJ, Luck JE, Dodds PN (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11:495–506

    PubMed  CAS  Google Scholar 

  • Gatti A, Rizza F, Delogu G, Terzi V, Porta-Puglia A, Vannacci G (1992) Physical and biochemical variability in a population of Drechslera graminea. J Genet Breed 46:179–186

    CAS  Google Scholar 

  • Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279

    Article  PubMed  CAS  Google Scholar 

  • Glowacki S, Macioszek VK, Kononowicz AK (2011) R proteins as fundamental of plant innate immune system. Cell Mol Biol Lett 16:1–24

    Article  PubMed  CAS  Google Scholar 

  • Golzar H (1995) Barley leaf blights in Iran. Rachis 14:41

    Google Scholar 

  • Howles P, Lawrence G, Finnegan J, McFadden H, Ayliffe M, Dodds P, Ellis J (2005) Autoactive alleles of the flax L6 rust resistance gene induce nonrace-specific rust resistance associated with hypersensitive response. Mol Plant Microbe Interact 18:570–582

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014

    Article  PubMed  CAS  Google Scholar 

  • Jones DA, Jones JDG (1997) The role of leucine-rich repeat proteins in plant defenses. Adv Bot Res 24:89–167

    Article  Google Scholar 

  • Jorgensen JH (1994) Genetics of powdery mildew resistance in barley. Crit Rev Plant Sci 13:97–119

    Article  Google Scholar 

  • Kruijt M, Brandwagt BF, de Wit PJM (2004) Rearrangements in the Cf-9 disease resistance gene cluster of wild tomato have resulted in three genes mediate Avr9 responsiveness. Genetics 168:1655–1663

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Kumar RG, Sakthivel K, Sundaram RM, Neeraja CN, Balachandran SM, Shobha Rani N, Viraktamath BC, Madhav MS (2010) Allele mining in crops: prospects and potentials. Biotechnol Adv 28:451–461

    Google Scholar 

  • Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene. Trends Genet 20:116–122

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Lin F, Wang L, Pan Q (2007) The in silico map-based cloning of Pi36, a rice Coiled-Coil-Nucleotide-Binding Site-Leucine-Rich Repeat gene that confers race-specific resistance to the blast fungus. Genetics 176:2541–2549

    Article  PubMed  CAS  Google Scholar 

  • Loutre C, Wicker T, Travella S, Galli P, Scofield S, Fahima T, Feuillet C, Keller B (2009) Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. Plant J 60:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Lukasik E, Takken FLW (2009) STANDing strong, resistance proteins instigators of plant defense. Curr Opin Plant Biol 12:427–436

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    PubMed  CAS  Google Scholar 

  • Mirlohi A, Brueggeman R, Drader T, Nirmal J, Steffenson BJ, Kleinhofs A (2008) Allele sequencing of the barley stem rust resistance gene Rpg1 identifies regions relevant to disease resistance. Genet Resist 98:910–918

    CAS  Google Scholar 

  • Pecchioni N, Faccioli P, Toubia-Rahme H, Valè G, Terzi V (1996) Quantitative resistance to barley leaf stripe (Pyrenophora graminea) is dominated by one major locus. Theor Appl Genet 93:97–101

    Article  Google Scholar 

  • Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes an NBS-LRR protein and is a member of the multiple family in rice. Genetics 172:1901–1914

    Article  PubMed  CAS  Google Scholar 

  • Rafiqi M, Bernoux M, Ellis JG, Dodds PN (2009) In the trenches of plant pathogen recognition: role of NB-LRR proteins. Semin Cell Dev Biol 20:1017–1024

    Article  PubMed  CAS  Google Scholar 

  • Rairdan GJ, Collier SM, Sacco MA, Baldwin TT, Boettrich T, Moffett P (2008) The coiled coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signalling. Plant Cell 20:739–751

    Article  PubMed  CAS  Google Scholar 

  • Rose LE, Bittner-Eddy PD, Langley CH, Holub EB, Michelmore RW, Beynon JL (2004) The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics 166:1517–1527

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  PubMed  CAS  Google Scholar 

  • Scherrer B, Isidore E, Klein P, Kim J, Bellec A, Chalhoub B, Keller B, Feuillet C (2005) Large intraspecific haplotype variability at the Rph7 locus results from rapid and recent divergence in the barley genome. Plant Cell 17:361–374

    Article  PubMed  CAS  Google Scholar 

  • Seeholzer S, Tsuchimatsu T, Jordan T, Bieri S, Pajonk S, Yang W, Jahoor A, Shimizu KK, Keller B, Schulze-Lefert P (2010) Diversity at the Mla Powdery Mildew resistance locus from cultivated barley reveals sites of positive selection. Mol Plant Microbe Interact 23:497–509

    Article  PubMed  CAS  Google Scholar 

  • Shen QH, Schulze-Lefert P (2007) Rumble in the nuclear Jungle: compartmentalization, trafficking, and nuclear action of plant immune receptors. EMBO J 26:4239–4301

    Article  Google Scholar 

  • Steuernagel B, Taudien S, Gundlach H, Seidel M, Ariyadasa R, Schulte D, Petzold A, Felder M, Graner A, Scholz U, Mayer KFX, Platzer M, Stein N (2009) De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley. BMC Genomics 10:547

    Article  PubMed  Google Scholar 

  • Tameling WI, Vossen JH, Albrecht M, Lengauer T, Berden JA, Haring MA, Cornelissen BJ, Takken FL (2006) Mutations in the NB-ARC domain of I-2 that impair ATO hydrolysis cause autoactivation. Plant Physiol 4:1233–1245

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • The International Barley Genome Sequencing Consortium (IBSC) (2012) A physical, genetical and functional sequence assembly of the barley gene space. Nature (London). doi:10.1038/nature11543

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tunali B (1995) Reactions of Turkish barley cultivars to Pyrenophora graminea isolates. Rachis 14:72–75

    Google Scholar 

  • Ueda H, Yamaguchi Y, Sano H (2006) Direct interaction between the Tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypersensitive response in tobacco plants. Plant Mol Biol 61:31–45

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Allefs S, van den Berg RG, Vleeshouwers VGA, van den Vossen EAG, Vosman B (2008) Allele mining in Solanum: conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theor Appl Genet 116:933–943

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Yahiaoui N, Keller B (2007) Illegitimate recombination is a major evolutionary mechanism for initiating size variation in plant resistance genes. Plant J 51:631–641

    Article  PubMed  CAS  Google Scholar 

  • Yahaiaoui N, Brunner S, Keller B (2006) Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J 47:85–98

    Article  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  PubMed  CAS  Google Scholar 

  • Yahyaoui AH (2004) Occurrence of barley leaf blight diseases in central-western Asia and North Africa. In: Yahyaoui AH, Brader L, Tekauz A, Wallwork H, Steffenson B (eds) Proceedings of the second international workshop on barley leaf blights. ICARDA, Aleppo, pp 13–18

    Google Scholar 

  • Yang Z (2007) PAML4: a program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pederson AMK (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    PubMed  CAS  Google Scholar 

  • Zhou B, Dolan M, Sakai H, Wang GL (2007) The genomic dynamics and evolutionary mechanism of the Pi2/9 locus in rice. Mol Plant Microbe Interact 20:63–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Donata Pagani and Nadia Faccini for excellent technical assistance. This work was supported by the Italian national projects ‘Proteine e geni per la protezione delle piante’ (‘PROTEO-STRESS’) and ‘Nuove tecnologie molecolari per l’analisi del genoma di organismi di interesse agrario’ (‘AGRO-NANOTECH’) funded by MiPAAF. The work was also supported by a grant ‘Barlex’ of the Ministry of Education and Research (BMBF, FKZ 0314000) to N.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Valè.

Additional information

Communicated by T. Komatsuda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2013_2075_MOESM1_ESM.pdf

Figure S1 Alignment between Morex rdg2a (Mrdg2a) and Thibaut Rdg2a and Nbs2-Rdg2a CDSs. In the consensus sequence, for each polymorphism, lower-case indicates conservation in only two genes, while a missing space represents no conservation among the three sequences. Colour legend: white background = conservation; grey background = conservation between only two sequences; black background = absence of conservation among the three genes. (PDF 265 kb)

122_2013_2075_MOESM2_ESM.pdf

Figure S2 Alignment between Morex RDG2A (MRDG2A) and Thibaut RDG2A and NB2-RDG2A proteins. For each polymorphism, in the consensus sequence, lower-case represents conservation in only two proteins, numbers indicate that all the residues at that position have the same biochemical properties (1 = acid; 2 = negative charged; 3 = hydrophilic; 4 = positive charged; 5 = aromatic; 6 = hydrophobic). Colour legend: white background = conservation; light grey background = conservation between only two sequences; white letter on dark grey background = different residue but with the same biochemical property; white letter on black background = different residue among the other sequences. (PDF 95 kb)

122_2013_2075_MOESM3_ESM.pdf

Figure S3 Alignment between the genomic sequences of Optic, Rebelle, Galleon, Acuario, Haruna Nijo and Thibaut Rdg2a alleles. The colour and consensus sequence legends were as in Fig. S1. (PDF 769 kb)

122_2013_2075_MOESM4_ESM.pdf

Figure S4 Alignment between Optic, Rebelle, Galleon, Acuario, Haruna Nijo and Thibaut RDG2A proteins. The colour and consensus sequence legends were as in Fig. S2. (PDF 125 kb)

Supplementary material 5 (DOC 35 kb)

Supplementary material 6 (DOC 91 kb)

Supplementary material 7 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biselli, C., Urso, S., Tacconi, G. et al. Haplotype variability and identification of new functional alleles at the Rdg2a leaf stripe resistance gene locus. Theor Appl Genet 126, 1575–1586 (2013). https://doi.org/10.1007/s00122-013-2075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2075-z

Keywords

Navigation