Skip to main content
Log in

Development of a rapid identification method for potato cytoplasm and its use for evaluating Japanese collections

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The cytoplasm of potatoes, characterized by the presence of T-type chloroplast DNA and β-type mitochondrial DNA, is sensitive to nuclear chromosomal genes that contribute to various types of male sterility. Past breeding efforts with various potato varieties have resulted in several different cytoplasms other than T/β. Varieties with Solanum stoloniferum-derived cytoplasm (W/γ) show complete male sterility, while those with S. demissum-derived cytoplasm (W/α) produce abundant, but non-functional pollen. Thus, identification of cytoplasmic types is important for designing efficient mating combinations. To date, only T-type chloroplast DNA can be accurately identified by a PCR marker. Here, we report a rapid identification technique by multiplex PCR, followed by restriction digestion with BamHI in one reaction tube, and propose a new nomenclature for potato cytoplasm types (T, D, P, A, M, and W). Using this new technique, our collections of 748 genotypes, including 84 Japanese named varieties, 378 breeding lines and 26 landraces, and 260 foreign varieties and breeding lines, were grouped into cytoplasm types: T (73.9 %), D (17.4 %), P (4.5 %), A (1.5 %), M (0.3 %), and W (2.4 %). The utility of this marker system for breeding is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdalla MMF, Hermsen JGTh (1971) The plasmon-genic basis of pollen lobedness and tetrad sterility in Solanum verrucosum hybrids and duplicate linkage groups. Genetica 42:261–270

    Article  Google Scholar 

  • Ames M, Spooner DM (2008) DNA from herbarium specimens settles a controversy about origins of the European potato. Am J Bot 95:252–257

    Article  PubMed  CAS  Google Scholar 

  • Ames M, Salas A, Spooner DM (2007) The discovery and phylogenetic implications of a novel 41 bp plastid DNA deletion in wild potatoes. Pl Syst Evol 268:159–175

    Article  CAS  Google Scholar 

  • Brown CR (1984) Tetrad sterility: a cytoplasmic-genic male sterility attractive to bumblebees. In: Proc 9th Trien conf Eur assn potato res, Interlaken, pp 101–102 (abstract)

  • Bryan GJ, McNicoll J, Ramsay G, Meyer RC, De Jong WS (1999) Polymorphic simple sequence repeat markers in chloroplast genomes of Solanaceous plants. Theor Appl Genet 99:859–867

    Article  CAS  Google Scholar 

  • Chimote VP, Chakrabarti SK, Pattanayak D, Pandey SK, Naik PS (2008) Molecular analysis of cytoplasm type in Indian potato varieties. Euphytica 162:69–80

    Article  CAS  Google Scholar 

  • Chung HJ, Jung JD, Park HW, Kim JH, Cha HW, Min SR, Jeong WJ, Liu J (2006) The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. Plant Cell Rep 25:1369–1379

    Article  PubMed  CAS  Google Scholar 

  • Dionne LA (1961) Cytoplasmic sterility in derivatives of Solanum demissum. Am Potato J 38:117–120

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Gavrilenko TA, Antonova OY, Kostina LI (2007) Study of genetic diversity in potato cultivars using PCR analysis of organelle DNA. Russ J Genet 43:1550–1555

    Article  CAS  Google Scholar 

  • Glendinning DR (1983) Potato introductions and breeding up to the early 20th century. New Phytol 94:479–505

    Article  Google Scholar 

  • Grun P (1979) Evolution of the cultivated potato: a cytoplasmic analysis. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic Press, London, pp 655–665

    Google Scholar 

  • Grun P, Aubertin M, Radlow A (1962) Multiple differentiation of plasmons of diploid species of Solanum. Genetics 47:1321–1333

    PubMed  CAS  Google Scholar 

  • Grun P, Ochoa C, Capage D (1977) Evolution of cytoplasmic factors in tetraploid cultivated potatoes (Solanaceae). Am J Bot 64:412–420

    Article  Google Scholar 

  • Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press, London

    Google Scholar 

  • Heinhorst S, Gannon GC, Galun E, Kenschaft L, Weissbach A (1988) Clone bank and physical and genetic map of potato chloroplast DNA. Theor Appl Genet 75:244–251

    Article  CAS  Google Scholar 

  • Hilali A, Lauer FI, Veilleux RE (1987) Reciprocal differences between hybrids of Solanum tuberosum Groups Tuberosum (haploid) and Phureja. Euphytica 36:631–639

    Article  Google Scholar 

  • Hoopes RW, Plaisted RL, Cubillos AG (1980) Yield and fertility of reciprocal-cross Tuberosum-Andigena hybrids. Am Potato J 57:275–284

    Article  Google Scholar 

  • Hosaka K (1986) Who is the mother of the potato? Restriction endonuclease analysis of chloroplast DNA of cultivated potatoes. Theor Appl Genet 72:606–618

    Article  CAS  Google Scholar 

  • Hosaka K (1993) Similar introduction and incorporation of potato chloroplast DNA in Japan and Europe. Jpn J Genet 68:55–61

    Article  Google Scholar 

  • Hosaka K (2002) Distribution of the 241 bp deletion of chloroplast DNA in wild potato species. Am J Potato Res 79:119–123

    Article  CAS  Google Scholar 

  • Hosaka K (2003) T-type chloroplast DNA in Solanum tuberosum L. ssp. tuberosum was conferred from some populations of S. tarijense Hawkes. Am J Potato Res 80:21–32

    Article  CAS  Google Scholar 

  • Hosaka K (2004) An easy, rapid, and inexpensive DNA extraction method, “One-minute DNA extraction”, for PCR in potato. Am J Potato Res 81:17–19

    Article  CAS  Google Scholar 

  • Hosaka K, Hanneman RE Jr (1988) The origin of the cultivated tetraploid potato based on chloroplast DNA. Theor Appl Genet 76:172–176

    CAS  Google Scholar 

  • Hosaka K, Hanneman RE Jr (1998) Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 2. Localization of an S locus inhibitor (Sli) gene on the potato genome using DNA markers. Euphytica 103:265–271

    Article  CAS  Google Scholar 

  • Hosaka K, Sanetomo R (2009) Comparative differentiation in mitochondrial and chloroplast DNA among cultivated potatoes and closely related wild species. Genes Genet Syst 84:371–378

    Article  PubMed  CAS  Google Scholar 

  • Hosaka K, de Zoeten GA, Hanneman RE Jr (1988) Cultivated potato chloroplast DNA differs from the wild type by one deletion: evidence and implications. Theor Appl Genet 75:741–745

    Article  CAS  Google Scholar 

  • Iwanaga M, Ortiz R, Cipar MS, Peloquin SJ (1991) A restorer gene for genetic-cytoplasmic male sterility in cultivated potatoes. Am Potato J 68:19–28

    Article  Google Scholar 

  • Kawagoe Y, Kikuta Y (1991) Chloroplast DNA evolution in potato (Solanum tuberosum L.). Theor Appl Genet 81:13–20

    Article  CAS  Google Scholar 

  • Lössl A, Adler N, Horn R, Frei U, Wenzel G (1999) Chondriome-type characterization of potato: mt α β γ δ ε and novel plastid-mitochondrial configurations in somatic hybrids. Theor Appl Genet 99:1–10

    Article  Google Scholar 

  • Lössl A, Götz M, Braun A, Wenzel G (2000) Molecular markers for cytoplasm in potato: male sterility and contribution of different plastid-mitochondrial configurations to starch production. Euphytica 116:221–230

    Article  Google Scholar 

  • Maris B (1989) Analysis of an incomplete diallel cross among three ssp. tuberosum varieties and seven long-day adapted ssp. andigena clones of the potato (Solanum tuberosum L.). Euphytica 41:163–182

    Article  Google Scholar 

  • Martyrosyan EV, Ryzhova NN, Kochieva EZ (2007) Polymorphism of chloroplast microsatellite DNA loci in Russian potato cultivars. Russ J Genet 43:1325–1327

    Article  CAS  Google Scholar 

  • Mori K, Mukojima N, Nakao T, Tamiya S, Sakamoto Y, Sohbaru N, Hayashi K, Watanuki H, Nara K, Yamazaki K, Ishii T, Hosaka K (2012) Germplasm release: Saikai 35, a male and female fertile breeding line carrying Solanum phureja-derived cytoplasm and potato cyst nematode resistance (H1) and Potato virus Y resistance (Ry chc ) genes. Am J Potato Res 89:63–72

    Article  Google Scholar 

  • Ortiz R, Iwanaga M, Peloquin SJ (1993) Male sterility and 2n pollen in 4x progenies derived from 4x × 2x and 4x × 4x crosses in potatoes. Potato Res 36:227–236

    Article  Google Scholar 

  • Plaisted RL, Hoopes RW (1989) The past record and future prospects for the use of exotic potato germplasm. Am Potato J 66:603–627

    Article  Google Scholar 

  • Powell W, Baird E, Duncan N, Waugh R (1993) Chloroplast DNA variability in old and recently introduced potato cultivars. Ann Appl Biol 123:403–410

    Article  Google Scholar 

  • Powell W, Morgante M, Andre C, McNicol JW, Machray GC, Doyle JJ, Tingey SV, Rafalski JA (1995) Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Curr Biol 5:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Provan J, Powell W, Dewar H, Bryan G, Machray GC, Waugh R (1999) An extreme cytoplasmic bottleneck in the modern European cultivated potato (Solanum tuberosum) is not reflected in decreased levels of nuclear diversity. Proc R Soc Lond B 266:633–639

    Article  Google Scholar 

  • Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Eco Evol 16:142–147

    Article  Google Scholar 

  • Ross H (1986) Potato breeding: problems and perspectives. Verlag Paul Parey, Berlin

    Google Scholar 

  • Sanetomo R, Hosaka K (2011) A maternally inherited DNA marker, descended from Solanum demissum (2n = 6x = 72) to S. tuberosum (2n = 4x = 48). Breed Sci 61:426–434

    Article  CAS  Google Scholar 

  • Sanford JC, Hanneman RE Jr (1979) Reciprocal differences in the photoperiod reaction of hybrid populations in Solanum tuberosum. Am Potato J 56:531–540

    Article  Google Scholar 

  • Sanford JC, Hanneman RE Jr (1982) Large yield differences between reciprocal families of Solanum tuberosum. Euphytica 31:1–12

    Article  Google Scholar 

  • Spooner DM, Castillo RT (1997) Reexamination of series relationships of South American wild potatoes (Solanaceae: Solanum sect. Petota): evidence from chloroplast DNA restriction site variation. Am J Bot 84:671–685

    Article  PubMed  CAS  Google Scholar 

  • Spooner DM, McLean K, Ramsay G, Waugh R, Bryan G (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci USA 102:14694–14699

    Article  PubMed  CAS  Google Scholar 

  • Spooner DM, Núñez J, Trujillo G, Herrera MDR, Guzmán F, Ghislain M (2007) Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proc Natl Acad Sci USA 104:19398–19403

    Article  PubMed  CAS  Google Scholar 

  • Sukhotu T, Hosaka K (2006) Origin and evolution of Andigena potatoes revealed by chloroplast and nuclear DNA markers. Genome 49:636–647

    Article  PubMed  CAS  Google Scholar 

  • Sukhotu T, Kamijima O, Hosaka K (2004) Nuclear and chloroplast DNA differentiation in Andean potatoes. Genome 47:46–56

    Article  PubMed  CAS  Google Scholar 

  • Sukhotu T, Kamijima O, Hosaka K (2005) Genetic diversity of the Andean tetraploid cultivated potato (Solanum tuberosum L. subsp. andigena Hawkes) evaluated by chloroplast and nuclear DNA markers. Genome 48:55–64

    Article  PubMed  CAS  Google Scholar 

  • Waugh R, Glendinning DR, Duncan N, Powell W (1990) Chloroplast DNA variation in European potato cultivars. Potato Res 33:505–513

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the US Potato Genebank (NRSP-6), Sturgeon Bay, Wisconsin and the CIP gene bank for providing the Solanum materials used in this study, and Dr. K. Asano, NARO Hokkaido Agricultural Research Center, for providing DNA samples of our germplasm collection. We also thank Dr. D. M. Spooner, USDA, ARS, University of Wisconsin, and anonymous reviewers for their critical and constructive comments on the earlier version of the manuscript. This study was supported by Calbee Inc. and Calbee Potato Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Hosaka.

Additional information

Communicated by R. Visser.

The Hawkes (1990) classification system is tentatively adopted throughout the text.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table (DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosaka, K., Sanetomo, R. Development of a rapid identification method for potato cytoplasm and its use for evaluating Japanese collections. Theor Appl Genet 125, 1237–1251 (2012). https://doi.org/10.1007/s00122-012-1909-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1909-4

Keywords

Navigation