Skip to main content
Log in

A molecular map of the apomixis-control locus in Paspalum procurrens and its comparative analysis with other species of Paspalum

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Since apomixis was first mapped in Paspalum, the absence of recombination that characterizes the related locus appeared to be the most difficult bottleneck to overcome for the dissection of the genetic determinants that control this trait. An approach to break the block of recombination was developed in this genus through an among-species comparative mapping strategy. A new apomictic species, P. procurrens (Q4094) was crossed with a sexual plant of P. simplex and their progeny was classified for reproductive mode with the aid of morphological, embryological and genetic analyses. On this progeny, a set of heterologous rice RFLP markers strictly co-segregating in coupling phase with apomixis was identified. These markers were all located on the telomeric region of the long arm of the chromosome 12 of rice. In spite of the lack of recombination exhibited by the apomixis-linked markers in P. procurrens, a comparative mapping analysis among P. simplex, P. malacophyllum, P. notatum and P. procurrens, allowed us to identify a small group of markers co-segregating with apomixis in all these species. These markers bracketed a chromosome region that likely contains all the genetic determinants of apomictic reproduction in Paspalum. The implications of this new inter-specific approach for overcoming the block of recombination to isolate the genetic determinants of apomixis and gain a better comprehension of genome structure of apomictic chromosome region are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albertini E, Marconi G, Reale L, Barcaccia G, Porceddu A, Ferranti F, Falcinelli M (2005) SERK and APOSTART. Candidate genes for apomixis in Poa pratensis. Plant Physiol 13:2185–2199

    Article  Google Scholar 

  • Al-Janabi SM, Honeycutt RJ, McClelland M, Sobral BW (1993) A genetic linkage map of Saccharum spontaneum L. Genetics 134:1249–1260

    PubMed  CAS  Google Scholar 

  • Allard RW (1960) Principles of plant breeding. John Wiley & Sons Inc, New York

    Google Scholar 

  • Avramova Z, Tikhonov A, SanMiguel P, Jin Y-K, Liu C, Woo S-S, Wing RA, Bennetzen JL (1996) Gene identification in a complex chromosomal continuum by local genomic cross-referencing. Plant J 10:1163–1168

    Article  PubMed  CAS  Google Scholar 

  • Ayliffe MA, Lawrence GL, Ellis JG, Pryor AJ (1994) Heteroduplex molecules between allelic sequences cause nonparental RAPD bands. Nucleic Acids Res 22:1632–1636

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Freeling M (1997) The unified grass genome: synergy in synteny. Genome Res 7:301–306

    PubMed  CAS  Google Scholar 

  • Bicknell RA, Borst NK, Koltunow AM (2000) Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms. Heredity 84:228–237

    Article  PubMed  Google Scholar 

  • Burton GW (1948) Artificial fog facilitates Paspalum emasculation. J Am Soc Agron 40:281

    Article  Google Scholar 

  • Cáceres ME, Pupilli F, Quarin CL, Arcioni S (1999) Feulgen-DNA densitometry of embryo sacs permits discrimination between sexual and apomictic plants in Paspalum simplex. Euphytica 110:161–167

    Article  Google Scholar 

  • Cáceres ME, Matzk F, Busti A, Pupilli F, Arcioni S (2001) Apomixis and sexuality in Paspalum simplex: characterization of the mode of reproduction in segregating progenies by different methods. Sex Plant Reprod 14:201–206

    Article  Google Scholar 

  • Calderini O, Chang BS, de Jong H, Busti A, Paolocci F, Arcioni S, de Vries SC, Abma-Henkens MHC, Klein Lankhorst RM, Donnison IS, Pupilli F (2006) Molecular cytogenetics and DNA sequence analysis of an apomixis-linked BAC in Paspalum simplex reveal a non pericentromere location and partial microcolinearity with rice. Theor Appl Genet 112:1179–1191

    Article  PubMed  CAS  Google Scholar 

  • Calderini O, Donnison I, Polegri L, Panara F, Thomas A, Arcioni S, Pupilli F (2010) Partial isolation of the genomic region linked with apomixis in Paspalum simplex. Mol Breed. doi:10.1007/s11032-010-9480-7

  • Caponio I, Quarín CL (1987) El sistema genetico de Paspalum simplex y de un hibrido interespecifico con Paspalum dilatatum. Kurtziana 19:35–45

    Google Scholar 

  • Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. P Natl Acad Sci USA 103:18650–18655

    Article  CAS  Google Scholar 

  • Chen M, SanMiguel P, de Oliveira AC, Woo S–S, Zhang H, Wing RA, Bennetzen JL (1997) Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. P Natl Acad Sci USA 94:3431–3435

    Article  CAS  Google Scholar 

  • Chen L, Guan L, Sro M, Hoffmann F, Adachi T (2005) Developmental expression of ASG-1 during gametogenesis in apomictic guinea grass (Panicum maximum). J Plant Physiol 162:1141–1148

    Article  PubMed  CAS  Google Scholar 

  • Conner JA, Goel S, Gunawan G, Cordonnier-Pratt MM, Johnson VE, Liang C, Wang H, Pratt LH, Mullet JE, DeBarry J, Yang L, Bennetzen JL, Klein PE, Ozias-Akins P (2008) Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus. Plant Physiol 147:1396–1411

    Article  PubMed  CAS  Google Scholar 

  • d′Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. PLoS Biol 7:e1000124

    Article  PubMed  Google Scholar 

  • Espinoza F, Quarin CL (1997) Relación genómica entre citotipos diploides de Paspalum simplex y Paspalum procurrens (Poaceae, Gramineae). Darwiniana 36:59–63

    Google Scholar 

  • Garcia-Aguilar M, Michaud C, Leblanc O, Grimanelli D (2010) Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes. Plant Cell 22:3249–3267

    Article  PubMed  CAS  Google Scholar 

  • Goel S, Chen Z, Conner JA, Akiyama Y, Hanna WW, Ozias-Akins P (2003) Delineation by fluorescence in situ hybridization of a single hemizygous chromosomal region associated with aposporous embryo sacs formation in Pennisetum squamulatum and Cenchrus ciliaris. Genetics 163:1069–1082

    PubMed  CAS  Google Scholar 

  • Grimanelli D, Leblanc O, Espinosa E, Perotti E, González de León D, Savidan Y (1998) Non-Mendelian transmission of apomixis in maize-Tripsacum hybrids caused by a transmission ratio distortion. Heredity 80:40–47

    Article  PubMed  Google Scholar 

  • Hanna WW, Bashaw EC (1987) Apomixis: its identification and use in plant breeding. Crop Sci 27:1136–1139

    Article  Google Scholar 

  • Harlan JR, Brooks MH, Borgaonkar DS, de Wet JMJ (1964) Nature and inheritance of apomixis in Botriochloa and Dichanthium. Bot Gaz 125:41–46

    Article  Google Scholar 

  • Herr JM (1971) A new clearing-squash technique for the study of ovule development in angiosperms. Am J Bot 58:785–790

    Article  Google Scholar 

  • Hojsgaard D, Schegg E, Valls JFM, Martinez EJ, Quarin CL (2008) Sexuality, apomixis, ploidy levels, and genomic relationships among four Paspalum species of the subgenus Anachyris (Poaceae). Flora 203:535–547

    Google Scholar 

  • Koltunow AM, Bicknell RA, Chaudhury AM (1995) Apomixis: molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol 108:1345–1352

    PubMed  CAS  Google Scholar 

  • Lander E, Green P, Abrahmson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps in experimental and natural populations. Genomics 1:171–181

    Article  Google Scholar 

  • Lincoln SE, Daley MJ, Lander ES (1992) Constructing genetic maps with MAPMAKER/EXP 3.0. Technical Report, 3rd edn. Whitehead Institute, Cambridge

    Google Scholar 

  • Liu BH (1998) Statistical genomics: linkage mapping and QTL analysis. CRC Press, Boca Raton

    Google Scholar 

  • Lyttle TW (1991) Segregation distortes. Annu Rev Genet 25:511–557

    Article  PubMed  CAS  Google Scholar 

  • Marimuthu MPA, Jolivet S, Ravi M, Pereira L, Davda JN, Cromer L, Wang L, Nogué F, Chan SWL, Siddiqi I, Mercier R (2011) Synthetic clonal reproduction through seeds. Science 331:876

    Article  PubMed  CAS  Google Scholar 

  • Martelotto LG, Ortiz JPA, Stein J, Espinoza F, Quarin CL, Pessino SC (2007) Genome rearrangements derived from autopolyploidization in Paspalum sp. Plant Sci 172:970–977

    Article  CAS  Google Scholar 

  • Martínez EJ, Urbani MH, Quarin CL, Ortiz JPA (2001) Inheritance of apospory in bahiagrass, Paspalum notatum. Hereditas 135:19–25

    Article  PubMed  Google Scholar 

  • Martínez EJ, Ortiz JPA, Hopp HE, Quarin CL (2003) Genetic characterization of apospory in tetraploid Paspalum notatum based on the identification of linked molecular markers. Mol Breed 12:319–327

    Article  Google Scholar 

  • Martínez EJ, Acuña CA, Hojsgaard DH, Tcach MA, Quarin CL (2007) Segregation for sexual seed production in Paspalum as directed by male gametes of apomictic triploid plants. Ann Bot 100:1239–1247

    Article  PubMed  Google Scholar 

  • Nogler GA (1982) How to obtain diploid apomictic Ranunculus auricomus plants not found in the wild state. Bot Helv 92:13–22

    Google Scholar 

  • Nogler GA (1984a) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin., pp 475–518

    Google Scholar 

  • Nogler GA (1984b) Genetics of apospory in apomictic Ranunculus auricomus. V. Conclusions. Bot Helv 92:123–411

    Google Scholar 

  • Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155:379–390

    PubMed  CAS  Google Scholar 

  • Noyes RD, Baker R, Mai B (2007) Mendelian segregation for two-factor apomixis in Erigeron annuus (Asteraceae). Heredity 98:92–98

    Article  PubMed  CAS  Google Scholar 

  • Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada J-P (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632

    Article  PubMed  CAS  Google Scholar 

  • Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomxis-linked markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. P Natl Acad Sci USA 95:5127–5132

    Article  CAS  Google Scholar 

  • Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17

    Article  PubMed  CAS  Google Scholar 

  • Polegri L, Calderini O, Arcioni S, Pupilli F (2010) Specific expression of apomixis-linked alleles revealed by comparative transcriptomic analysis of sexual and apomictic Paspalum simplex Morong flowers. J Exp Bot 61:1869–1883

    Article  PubMed  CAS  Google Scholar 

  • Pupilli F, Caceres ME, Quarín CL, Arcioni S (1997) Segregation analysis of RFLP markers reveals a tetrasomic inheritance in apomictic Paspalum simplex. Genome 40:822–828

    Article  PubMed  CAS  Google Scholar 

  • Pupilli F, Lambobarda P, Cáceres ME, Quarin CL, Arcioni S (2001) The chromosome segment related to apomixis in Paspalum simplex is homoeologous to the telomeric region of the long arm of rice chromosome 12. Mol Breed 8:53–61

    Article  CAS  Google Scholar 

  • Pupilli F, Martínez EJ, Busti A, Calderini O, Quarin CL, Arcioni S (2004) Comparative mapping reveals partial conservation of synteny at the apomixis locus in Paspalum spp. Mol Genet Genomics 270:539–548

    Article  PubMed  CAS  Google Scholar 

  • Quarin CL (1992) The nature of apomixis and its origin in panicoid grasses. Apomixis Newsl 5:8–15

    Google Scholar 

  • Quarin CL, Espinoza F, Pessino Martínez EJ, SC Bovo OA (2001) A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sex Plant Reprod 13:243–249

    Article  Google Scholar 

  • Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618

    Article  PubMed  CAS  Google Scholar 

  • Ravi M, Marimuthu MP, Siddiqi I (2008) Gamete formation without meiosis in Arabidopsis. Nature 451:1121–1124

    Article  PubMed  CAS  Google Scholar 

  • Roche D, Chen Z, Hanna WW, Ozias-Akins P (2001) Non-Mendelian transmission of an apospory-specific genomic region in a reciprocal cross between sexual pearl millet (Pennisetum glaucum) and an apomictic F1 (P. glaucum × P. squamulatum). Sex Plant Reprod 13:217–223

    Article  CAS  Google Scholar 

  • Schallau A, Arzenton F, Johnston AJ, Hähnel U, Koszegi D, Blattner FR, Altschmied L, Haberer G, Barcaccia G, Baumlein H (2010) Identification and genetic analysis of the APOSPORY locus in Hypericum perforatum L. Plant J 62:773–784

    Article  PubMed  CAS  Google Scholar 

  • Skinner DJ, Baker SC, Meister RJ, Broadhvest J, Schneitz K, Gasser CS (2001) The Arabidopsis HUELLENLOS gene, which is essential for normal ovule development, encodes a mitochondrial ribosomal protein. Plant Cell 13:2719–2730

    Article  PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Stein J, Pessino SC, Martínez EJ, Rodriguez MP, Siena LA, Quarin CL, Ortiz JPA (2007) A genetic map of tetraploid Paspalum notatum Flügge (bahiagrass) based on single-dose molecular markers. Mol Breed 20:153–166

    Article  CAS  Google Scholar 

  • Urbani MH, Quarin CL, Espinoza F, Penteado MIO, Rodrigues IF (2002) Cytogeography and reproduction of the Paspalum simplex polyploid complex. Plant Sys Evol 236:99–105

    Article  Google Scholar 

  • van Dijk P (2003) Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philos T Roy Soc B 358:1113–1121

    Article  Google Scholar 

  • Vijverberg K, Van der Hulst RGM, Lindhout P, Van Dijk PJ (2004) A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion; Asteraceae). Theor Appl Genet 108:725–732

    Article  PubMed  CAS  Google Scholar 

  • Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs. Florencia Galdeano and Mr. Marco Guaragno for their technical assistance. This work was supported by the Italian Ministero degli Affari Esteri, Direzione Generale per la Promozione e la Cooperazione Culturale (L401/1990) in the frame of the project “Isolation of genetic determinants of apomixis in Paspalum simplex” (bilateral agreement Italy–Argentina, 2006–2007), the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina, PICT N 13578 and PAV 137/3, and the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET), PIP 11220080101378. DH Hojsgaard received a fellowship from CONICET. We thank Dr. T. Sasaki, the Japanese Rice Genome Research Program of the National Institute of Agrobiological Resources (NIAR), and the Institute of the Society of Techno-Innovation in Agriculture, Forestry and Fisheries (STAFF), Tsukuba, Japan, for providing the rice probes. Contribution No. 364 from CNR-IGV Perugia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pupilli.

Additional information

Communicated by P. Langridge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hojsgaard, D.H., Martínez, E.J., Acuña, C.A. et al. A molecular map of the apomixis-control locus in Paspalum procurrens and its comparative analysis with other species of Paspalum . Theor Appl Genet 123, 959–971 (2011). https://doi.org/10.1007/s00122-011-1639-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1639-z

Keywords

Navigation