Skip to main content
Log in

Characterizing variation in mycorrhiza effect among diverse plant varieties

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Exploitation of arbuscular mycorrhizal fungi may be an important approach for development of reduced-input agriculture. We discuss the use of linear models to analyze variation in mycorrhiza response among diverse plant varieties in order to assess the value of mycorrhizas. Our approach allows elimination of variation linked to differences in plant performance in the absence of mycorrhizas and the selection of plant lines that might harbor genetic variation of use to improve the mycorrhizal symbiosis in agriculture. We illustrate our approach by applying it to previously published and to novel data. We suggest that in dealing with a relative trait such as mycorrhiza effect, the choice of measure used to quantify the trait greatly affects interpretation. In the plant populations under consideration, we find evidence for a greater potential to increase mycorrhiza benefit than previously suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NC:

Performance of non-mycorrhizal plants

M :

Performance of mycorrhizal plants

R :

Absolute responsiveness

R′ :

Relative responsiveness, relative to NC

μ (X):

Mean of X

σ2 (X):

Variance of X

σ (X, Y):

Covariance of X and Y

i :

Intercept of regression line

a :

Slope of regression line

δ :

Deviation from regression line

a M :

Slope of the regression line of M against NC

a R :

Slope of the regression line of R against NC

i M :

Intercept of the regression line of M against NC

i R :

Intercept of the regression line of R against NC

r 2 :

Coefficient of determination

r 2 M :

Coefficient of determination of M against NC

r 2 R :

Coefficient of determination of R against NC

m :

Asymptote of a logistic dose–response curve

n :

y-axis intercept of a logistic dose–response curve

f :

Position of the inflection point of a logistic dose–response curve

d :

Mycorrhiza dependence (see Janos 2007) for 15% of a logistic dose–response curve asymptote

References

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Da Silva AE, Gabelman WH (1992) Screening maize inbred lines for tolerance of low-P stress conditions. Plant Soil 146:181–187

    Article  Google Scholar 

  • Delgado A, Scalenghe R (2008) Aspects of phosphorus transfer from soils in Europe. J Plant Nutr Soil Sci (Zeitschrift Fur Pflanzenernahrung Und Bodenkunde) 171:552–575

    Article  CAS  Google Scholar 

  • Doll J, Hause B, Demchenko K, Pawlowski K, Krajinski F (2003) A member of the germin-like protein family is a highly conserved mycorrhiza-specific induced gene. Plant Cell Physiol 44:1208–1214

    Article  CAS  PubMed  Google Scholar 

  • Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300:758–762

    Article  CAS  PubMed  Google Scholar 

  • Falconer DS (1990) Selection in different environments—effects on environmental sensitivity (reaction norm) and on mean performance. Genet Res 56:57–70

    Article  Google Scholar 

  • Frenzel A, Manthey K, Perlick AM, Meyer F, Puhler A, Kuster H, Krajinski F (2005) Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. Mol Plant Microbe Interact 18:771–782

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi S (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211:609–613

    Article  CAS  PubMed  Google Scholar 

  • Grace EJ, Cotsaftis O, Tester M, Smith FA, Smith SE (2009) Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytol 181:938–949

    Google Scholar 

  • Güimil S, Chang H, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakely EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci 102:8066–8070

    Article  PubMed  CAS  Google Scholar 

  • Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U (2008) Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20:2989–3005

    Article  CAS  PubMed  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70:2032–2040

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Gill BS, Cox TS (1995) Chromosomal location of mycorrhizal responsive genes in wheat. Can J Bot 73:891–897

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1996) Mycorrhizal response in wheat cultivars: relationship to phosphorous. Can J Bot 74:19–25

    Article  CAS  Google Scholar 

  • Hoagland D, Broyer T (1936) General nature of the process of salt accumulation by roots with description of experimental methods. Plant Physiol 11:451–507

    Article  Google Scholar 

  • Izem R, Kingsolver JG (2005) Variation in continuous reaction norms: quantifying directions of biological interest. Am Nat 166:277–289

    Article  PubMed  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    Article  PubMed  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  CAS  PubMed  Google Scholar 

  • Kaeppler SM, Parke JL, Mueller SM, Senior L, Stuber C, Tracy WF (2000) Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorous and responsiveness to arbuscular mycorrhizal fungi. Crop Sci 40:358–364

    Article  Google Scholar 

  • Khasawneh FE, Sample EC, Kamprath EJ (eds) (1986) The role of phosphorus in agriculture. American Society of Agronomy, Madison, USA

    Google Scholar 

  • Koide RT, Li M, Lewis J, Irby C (1988) Role of mycorrhizal infection in the growth and reproduction of wild vs. cultivated plants. I. Wild vs. cultivated oats. Oecologia 77:537–543

    Article  Google Scholar 

  • Krajinski F, Hause B, Gianinazzi-Pearson V, Franken P (2002) Mtha1, a plasma membrane H+-ATPase gene from Medicago truncatula shows arbuscule-specific induced expression in mycorrhizal tissue. Plant Mol Biol 4:754–761

    CAS  Google Scholar 

  • Li HY, Smith SE, Holloway RE, Zhu YG, Smith FA (2006) Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol 172:536–543

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Smith SE, Ophel-Keller K, Holloway RE, Smith FA (2008) Naturally occurring arbuscular mycorrhizal fungi can replace direct P uptake by wheat when roots cannot access added P fertiliser. Funct Plant Biol 35:124–130

    Article  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, MA

    Google Scholar 

  • Paszkowski U, Boller T (2002) The growth defect of lrt1, a maize mutant lacking lateral roots, can be complemented by symbiotic fungi or high phosphate nutrition. Planta 214:584–590

    Article  CAS  PubMed  Google Scholar 

  • Salzer P, Bonanomi A, Beyer K, Vogeli-Lange R, Aescherbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T (2000) Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation and pathogen infection. MPMI 13:763–777

    Article  CAS  PubMed  Google Scholar 

  • Sawers RJ (2009) Breeding for reaction. In: Huttunen N, Sinisalo T (eds) Plant Breeding. Nova Publishers, New York

  • Sawers RJ, Gutjahr C, Paszkowski U (2008) Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci 13:93–97

    CAS  PubMed  Google Scholar 

  • Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer, Sunderland, MA

    Google Scholar 

  • Smith SE, Read DJ (2007) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Phys 133:16–20

    Article  CAS  Google Scholar 

  • Smith S, Smith F, Jacobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358

    Article  CAS  PubMed  Google Scholar 

  • Uehlein N, Fileschi K, Eckert M, Bienert GP, Bertl A, Kaldenhoff R (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68:122–129

    Article  CAS  PubMed  Google Scholar 

  • Wright DP, Scholes JD, Read DJ, Rolfe SA (2005) European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection. New Phytol 167:881–896

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Smith S, Barritt A, Smith F (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255

    Article  CAS  Google Scholar 

  • Zhu Y-G, Smith FA, Smith SE (2003) Phosphorous efficiency and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Mycorrhiza 13:93–100

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Tom Juenger (University of Texas), Jerome Goudet (University of Lausanne), and anonymous reviewers for helpful comments during preparation of this manuscript, Shawn Kaeppler (University of Wisconsin) for providing maize seed, and Blaise Tissot (University of Lausanne) for help with plant growth. R.S. thanks César Sawers for additional assistance. This work was supported by Swiss National Science Foundation grant PP00A–110874 to R.S. and U.P. and a European COST action 870 grant to M. G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruairidh J. H. Sawers.

Additional information

Communicated by E. Guiderdoni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1, Table S2, Table S3 (DOC 106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawers, R.J.H., Gebreselassie, M.N., Janos, D.P. et al. Characterizing variation in mycorrhiza effect among diverse plant varieties. Theor Appl Genet 120, 1029–1039 (2010). https://doi.org/10.1007/s00122-009-1231-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1231-y

Keywords

Navigation