Skip to main content
Log in

Heterotic patterns of sugar and amino acid components in developing maize kernels

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Heterosis is the superior performance of hybrids over their inbred parents. Despite its importance, little is known about the genetic and molecular basis of this phenomenon. Heterosis has been extensively exploited in plant breeding, particularly in maize (Zea mays, L.), and is well documented in the B73 and Mo17 maize inbred lines and their F1 hybrids. In this study, we determined the dry matter, the levels of starch and protein components and a total of 24 low-molecular weight metabolites including sugars, sugar-phosphates, and free amino acids, in developing maize kernels between 8 and 30 days post-pollination (DPP) of the hybrid B73 × Mo17 and its parental lines. The tissue specificity of amino acid and protein content was investigated between 16 and 30 DPP. Key observations include: (1) most of the significant differences in the investigated tissue types occurred between Mo17 and the other two genotypes; (2) heterosis of dry matter and metabolite content was detectable from the early phase of kernel development onwards; (3) the majority of metabolites exhibited an additive pattern. Nearly 10% of the metabolites exhibited nonadditive effects such as overdominance, underdominance, and high-parent and low-parent dominance; (4) The metabolite composition was remarkably dependent on kernel age, and this large developmental effect could possibly mask genotypic differences; (5) the metabolite profiles and the heterotic patterns are specific for endosperm and embryo. Our findings illustrate the power of metabolomics to characterize heterotic maize lines and suggest that the metabolite composition is a potential marker in the context of heterosis research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Birchler JA, Yao H, Chudalayandi S (2007) Biological consequences of dosage dependent gene regulatory systems. Biochim Biophys Acta 1769:422–428

    CAS  PubMed  Google Scholar 

  • Borrás L, Westgate ME (2006) Predicting maize kernel sink capacity early in development. Field Crops Res 95:223–233

    Article  Google Scholar 

  • Brieger FG (1950) The genetic basis of heterosis in maize. Genetics 35:420–445

    CAS  PubMed  Google Scholar 

  • Cho K, Torres NL, Subramanyam S, Deepak SA, Sardesai N, Han O, Williams CE, Ishii H, Iwahashi H, Rakwal R (2006) Protein extraction/solubilization protocol for monocot and dicot plant gel-based proteomics. J Plant Biol 49:413–420

    Article  CAS  Google Scholar 

  • Connolly J, Wachendorf M (2001) Developing multisite dynamic models of mixed species plant communities. Annals Bot 88:703–712

    Article  Google Scholar 

  • Darwin CR (ed) (1876) The effects of cross and self fertilisation in the vegetable kingdom, 1st edn. John Murray, London

  • Digby PGN, Kempton RA (1987) Multivariate analysis of ecological communities. Chapman and Hall, London

    Google Scholar 

  • Dobzhansky T (1950) Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. Genetics 35:288–302

    CAS  PubMed  Google Scholar 

  • Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotech 18:1157–1161

    Article  CAS  Google Scholar 

  • Gärtner T, Steinfath M, Andorf S, Lisec J, Meyer RC, Altmann T, Willmitzer L, Selbig J (2009) Improved heterosis prediction by combining information on DNA and metabolic markers. PLoS One 4:e5220. doi:10.1371/journal.pone.0005220.s004

    Article  PubMed  CAS  Google Scholar 

  • Gower JC, Hand DJ (1996) Biplots. Chapman and Hall, London

    Google Scholar 

  • Griffing B, Zsiros E (1971) Heterosis associated with genotype-environment interactions. Genetics 68:443–455

    PubMed  CAS  Google Scholar 

  • Guo M, Rupe MA, Danilevskaya ON, Yang X, Hu Z (2003) Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J 36:30–44

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Rupe MA, Yang X, Crasta O, Zinselmeier C, Smith OS, Bowen B (2006) Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet 113:831–845

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Yang S, Rupe M, Hu B, Bickel DR, Arthur L, Smith O (2008) Genome-wide allele-specific expression analysis using massively parallel signature sequencing (MPSS) reveals cis- and trans-effects on gene expression in maize hybrid meristem tissue. Plant Mol Biol 66:551–563

    Article  CAS  PubMed  Google Scholar 

  • Harrigan GG, Stork LAG, Riordan SG, Reynolds TL, Ridley WP, Masucci JD, MacIsaac S, Halls SC, Orth R, Smith RG, Wen L, Brown WE, Welsch M, Riley R, McFarland D, Pandravada A, Glenn KC (2007a) Impact of genetics and environment on nutritional and metabolite components of maize grain. J Agric Food Chem 55:6177–6185

    Article  CAS  PubMed  Google Scholar 

  • Harrigan GG, Stork LAG, Riordan SG, Ridley WP, MacIsaac S, Halls SC, Orth R, Rau D, Smith RG, Wen L, Brown WE, Riley R, Sun D, Modiano S, Pester T, Lund A, Nelson D (2007b) Metabolite analyses of grain from maize hybrids grown in the United States under drought and watered conditions during the 2002 field season. J Agric Food Chem 55:6169–6176

    Article  CAS  PubMed  Google Scholar 

  • Hoecker N, Lamkemeyer T, Sarholz B, Paschold A, Fladerer C, Madlung J, Wurster K, Stahl M, Piepho H-P, Nordheim A, Hochholdinger F (2008) Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F1-hybrid compared to its parental inbred lines. Proteomics 8:3882–3894

    Article  CAS  PubMed  Google Scholar 

  • Jahnke S, Sarholz B, Kühr V, Gutiérrez-Marcos J, Geiger H, Piepho H-P, Scholten S, Thiemann A (2010) Heterosis in early seed development: a comparative study of F1 embryo and endosperm tissues six days after fertilization. Theor Appl Genet (in press)

  • Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997

    Article  CAS  PubMed  Google Scholar 

  • Kölreuter JG (1766) Vorläufige Nachricht von einigen das Geschlecht der Pflanzen betreffenden Versuchen und Beobachtungen. Engelmann, Leipzig

  • Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23:60–66

    Article  CAS  PubMed  Google Scholar 

  • Lisec J, Steinfath M, Meyer RC, Selbig J, Melchinger AE, Willmitzer L, Altmann T (2009) Identification of heterotic metabolite QTL in Arabidopsis thaliana RIL and IL populations. Plant J 59:777–788

    Article  CAS  PubMed  Google Scholar 

  • Lorenz H (1972) Beziehungen zwischen dem Aminosäurepool von Inzuchtlinien und dem Ertrag ihrer Hybriden bei Mais. Z Pflanzenzüchtg 68:155–170

    Google Scholar 

  • Lorenz H (1975) Relationships between yield and free amino acids in hybrids and inbred lines of corn (Zea mays L.). Z Pflanzenzüchtg 75:10–23

    CAS  Google Scholar 

  • Meng F, Ni Z, Wu L, Sun Q (2005) Differential gene expression between cross-fertilized and self-fertilized kernels during the early stages of seed development in maize. Plant Sci 168:23–28

    Article  CAS  Google Scholar 

  • Meyer RC, Törjék O, Becher M, Altmann T (2004) Heterosis of biomass production in Arabidopsis. Establishment during early development. Plant Phys 134:1813–1823

    Article  CAS  Google Scholar 

  • Meyer RC, Steinfath M, Lisec J, Becher M, Witucka-Wall H, Toerjek O, Fiehn O, Eckardt A, Willmitzer L, Selbig J, Altmann T (2007a) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:4759–4764

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Pospisil H, Scholten S (2007b) Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol 63:381–391

    Article  CAS  PubMed  Google Scholar 

  • Moll RH, Lonnquist JH, Fortuno JV, Johnson EC (1965) The relationship of heterosis and genetic divergence in maize. Genetics 52:139–144

    CAS  PubMed  Google Scholar 

  • Murtagh F (1985) Multidimensional clustering algorithms, in COMPSTAT Lectures 4. Physica Verlag, Wuerzburg

    Google Scholar 

  • Piepho H-P (2009) Data transformation in statistical analysis of field trials with changing treatment variance. Agron J 101:865–869

    Article  Google Scholar 

  • Rhodes D, Ju GC, Yang WJ, Samaras Y (1992) Plant metabolism and heterosis. Plant Breed Rev 10:53–91

    CAS  Google Scholar 

  • Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. Plant J 23:131–142

    Article  CAS  PubMed  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie A (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    Article  CAS  PubMed  Google Scholar 

  • Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotech 24:447–454

    Article  CAS  Google Scholar 

  • Shull GF (1908) The composition of a field of maize. Rep Am Breed Assoc 4:296–301

    Google Scholar 

  • Shull GF (1911) The genotypes of maize. Am Nat 45:234–252

    Article  Google Scholar 

  • Shull GF (1914) Duplicate genes for capsule form in Bursa bursa-pastoris. ZIAV 12:97–149

    Google Scholar 

  • Shull GF (1952) Beginnings of the heterosis concept. In: Gowen JW (ed) Heterosis. Iowa State College Press, Ames, pp 14–48

    Google Scholar 

  • Singletary GW, Banisdar R, Keeling PL (1997) Influence of gene dosage on carbohydrate synthesis and enzymic activities in endosperm of starch-deficient mutants of maize. Plant Physiol 113:293–304

    CAS  PubMed  Google Scholar 

  • Spielbauer G, Margl L, Hannah CL, Gierl A, Bacher A, Eisenreich W, Genschel U (2006) Robustness of central carbohydrate metabolism in developing maize kernels. Phytochemistry 67:1460–1475

    Article  CAS  PubMed  Google Scholar 

  • Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17:264–275

    Article  CAS  PubMed  Google Scholar 

  • Steinfath M, Gärtner T, Lisec J, Meyer R, Altmann T, Willmitzer L, Selbig J (2010) Prediction of hybrid biomass in Arabidopsis thaliana by selected SNP and metabolic markers. Theor Appl Genet (in press)

  • Stuber CW (1994) Heterosis in plant breeding. Plant Breed Rev 12:227–251

    Google Scholar 

  • Stupar RM, Springer NM (2006) Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics 173:2199–2210

    Article  CAS  PubMed  Google Scholar 

  • Taylor JMG (2006) Transformations–II. In: Kotz S (ed) Encyclopedia of statistical science, vol 14. Wiley, New York, pp 8703–8710

    Google Scholar 

  • Tsaftaris SA (1995) Molecular aspects of heterosis in plants. Physiol Plant 94:362–370

    Article  CAS  Google Scholar 

  • Wang X, Cao H, Zhang D, Li B, He Y, Li J, Wang S (2007) Relationship between differential gene expression and heterosis during ear development in maize (Zea mays L.). J Genet Genomics 34:160–170

    Article  CAS  PubMed  Google Scholar 

  • Zanoni U, Dudley JW (1989) Comparison of different methods of identifying inbreds useful for improving elite maize hybrids. Crop Sci 29:577–582

    Article  Google Scholar 

Download references

Acknowledgments

We thank Thomas Hoffmann and Florian Vitzthum for support with the GC–MS analysis and Nicole Däschlein for technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft and by the Dr-Ing. Leonhardt-Lorenz-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilla Römisch-Margl.

Additional information

Communicated by B. Godshalk.

Contribution to the special issue “Heterosis in Plants”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2009_1190_MOESM1_ESM.doc

Supplementary Fig. 1 Sugar, sugar-phosphate and amino acid content in B73, B73 × Mo17 and Mo17 maize kernels. The compounds are grouped according to their biosynthetic origin. The diagrams illustrate the reconstructed original data as described in Material and Methods. Metabolite contents are expressed on a starch-corrected dry weight basis. (DOC 98 kb)

122_2009_1190_MOESM2_ESM.doc

Supplementary Fig. 2 Amino acid content in B73, B73 × Mo17 and Mo17 maize endosperm. The compounds are grouped according to their biosynthetic origin. The diagrams illustrate the reconstructed original data as described in Material and Methods. Metabolite contents are expressed on a starch-corrected dry weight basis. (DOC 77 kb)

122_2009_1190_MOESM3_ESM.doc

Supplementary Fig. 3 Amino acid content in B73, B73 × Mo17 and Mo17 maize embryo. The compounds are grouped according to their biosynthetic origin. The diagrams illustrate the reconstructed original data as described in Material and Methods. Metabolite contents are expressed on a starch-corrected dry weight basis. (DOC 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Römisch-Margl, L., Spielbauer, G., Schützenmeister, A. et al. Heterotic patterns of sugar and amino acid components in developing maize kernels. Theor Appl Genet 120, 369–381 (2010). https://doi.org/10.1007/s00122-009-1190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1190-3

Keywords

Navigation