Skip to main content
Log in

Risk assessment of transgenic apomictic tetraploid bahiagrass, cytogenetics, breeding behavior and performance of intra-specific hybrids

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Pollen-mediated gene transfer from stress tolerant or herbicide-resistant transgenic plants may cause environmental or agronomic problems. Apomictic seed production found in some bahiagrass cultivars may serve as a natural transgene containment system. Under greenhouse conditions, the average gene transfer frequency from an herbicide-resistant apomictic tetraploid to a population of sexual diploid bahiagrass genotypes or apomictic tetraploid bahiagrass was 0.16% when the transgenic pollen donor was placed at 0.5–1.5 m distance from the non-transgenic pollen receptors. The herbicide-resistant hybrids were characterized for transgene integration, expression and ploidy, by Southern blot analysis, immuno-chromatography and flow cytometry, respectively. Hybrids resulting from open pollination of non-transgenic diploid female plants with transgenic tetraploid male plants were triploids or near-triploids, with 2n = 26–34. These hybrids displayed a wide range of phenotypic variability, including some non-persistent or non-flowering dwarf-type hybrids with good vigor, or hybrids with vegetative growth similar to non-transgenic plants, but with significantly reduced seed set. Non-flowering aneu-triploids with good vigor/field performance will provide the highest level of transgene containment. Embryo sac analysis of pollinated spikelets confirmed a high proportion of aborted ovules. An apospory-linked RFLP marker was detected in 13 of the 15 near-triploid hybrids. All flowering aneuploid hybrids displayed significantly reduced seed set, and none of the sexual near-triploid hybrids produced any seeds. All tetraploid gene transfer events carried the apospory-linked RFLP marker, suggesting that despite the presence of the aposporus locus, a low degree of sexuality co-exists in apomictic tetraploid cultivars. Thus, tetraploid apomictic bahiagrass does not provide complete transgene containment, although intra-specific gene transfer is drastically reduced compared to sexually reproducing perennial grasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Clonal plants for the second and third experiment set were generated by clonal propagation of a single seedling of cultivar Pensacola in liquid culture media containing 4.3 g l−1 MS salts with vitamins (Murashige and Skoog 1962), 30 g l−1 sucrose and 0.3 mg l−1 6-benzylaminopurine (BAP).

References

  • Acuna CA (2006) Bahiagrass germplasm reproductive characterization, and breeding at the tetraploid level. M.S. thesis, University of Florida, Gainesville

  • Acuna CA, Martinez EJ, Quarin CL (2004) Apospory followed by sterility in a hypotriploid hybrid (2x × 4x) of Paspalum. Caryologia 57:373–378

    Google Scholar 

  • Acuna CA, Blount AR, Quesenberry KH, Hanna WW, Kenworthy KE (2007) Reproductive characterization of bahiagrass germplasm. Crop Sci 47:1711–1717

    Article  Google Scholar 

  • Adamowski E, Pagliarini MS, Batista LAR (1998) Chromosome elimination in Paspalum subciliatum (Notata group). Sex Plant Reprod 11:272–276

    Article  Google Scholar 

  • Adamowski E, Pagliarini MS, Bonato ABM, Batista LAR, Valls JBM (2005) Chromosome numbers and meiotic behavior of some Paspalum accessions. Genet Mol Biol 28:773–780

    Article  Google Scholar 

  • Agharkar M, Lomba P, Altpeter F, Zhang H, Kenworthy K, Lange T (2007) Stable expression of AtGA2ox1 in a low-input turfgrass (Paspalum notatum Flugge) reduces bioactive gibberellin levels and improves turf quality in field conditions. Plant Biotech J 5:791–801

    Article  CAS  Google Scholar 

  • Altpeter F, James VA (2005) Genetic transformation of turf-type bahiagrass (Paspalum notatum Flugge) by apomictic gene transfer. Intern Turfgrass Soc Res J 10:485–489

    Google Scholar 

  • Bae TW, Vanjildorj E, Song SY, Nishiguchi S, Yang SS, Chandrashekhar T, Kang TW, Kim JI, Koh YJ, Lee J, Lee YE, Ryu KH, Lee HY, Park SY (2008) Environmental risk assessment of genetically engineered herbicide-tolerant Zoysia japonica. J Environ Qual 37:207–218

    Article  PubMed  CAS  Google Scholar 

  • Busi R, Yu Q, Barrett-Lennard R, Powles S (2008) Long distance pollen-mediated flow of herbicide resistance genes in Lolium rigidum. Theor Appl Genet 117:1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Caceres ME, Matzk F, Busti A, Pupilli F, Arcioni S (2001) Apomixis and sexuality in Paspalum simplex: characterization of the mode of reproduction in segregating progenies by different methods. Sex Plant Reprod 14:201–206

    Article  Google Scholar 

  • Chapman MA, Burke JM (2006) Letting the gene out of the bottle: the population genetics of genetically modified crops. New Phytol 170:429–443

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  PubMed  CAS  Google Scholar 

  • Cunliffe KV, Vecchies AC, Jones ES, Kearney GA, Forster JW, Spangenberg GC, Smith KF (2004) Assessment of gene flow using tetraploid genotypes of perennial ryegrass (Lolium perenne L.). Aust J Agr Res 55:389–396

    Article  CAS  Google Scholar 

  • Daurelio LD, Espinoza F, Quarin CL, Pessino SC (2004) Genetic diversity in sexual diploid and apomictic tetraploid populations of Paspalum notatum situated in sympatry and allopatry. Plant Syst Evol 244:189–199

    Article  CAS  Google Scholar 

  • Dixon L, Nyffenegger T, Delley G, Martinezizquierdo G, Hohn T (1986) Evidence for replicative recombination in Cauliflower Mosaic-Virus. Virology 150:463–468

    Article  PubMed  CAS  Google Scholar 

  • Do Valle CB, Glienke C, Leguizamon GOC (1994) Inheritance of apomixis in Brachiaria, a tropical forage grass. Apomixis Newsl 7:42–43

    Google Scholar 

  • Dolezel J, Lysak MA, Houwe IV, Dolezelova M, Roux N (1997) Use of flow cytometry for rapid ploidy determination in Musa species. Infomusa 6:6–9

    Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  PubMed  CAS  Google Scholar 

  • Espinoza F, Pessino SC, Quarin CL, Valle EM (2002) Effect of pollination timing on the rate of apomictic reproduction revealed by RAPD markers in Paspalum notatum. Ann Bot 89:16–170

    Article  Google Scholar 

  • Espinoza F, Daurelio LD, Pessino SC, Vall EM, Quarin CL (2006) Genetic characterization of Paspalum notatum accessions by AFLP markers. Plant Syst Evol 258:147–159

    Article  CAS  Google Scholar 

  • Gates RN, Quarin CL, Pedreira CGS (2004) Bahiagrass. In: Warm-season (C4) grasses, Agronomy monograph no 45s

  • Gernand D, Rutten T, Pickering R, Houben A (2006) Elimination of chromosomes in Hordeum vulgare × H. bulbosum crosses at mitosis and interphase involves micronucleus formation and progressive heterochromatinization. Cytogenet Genome Res 114:169–174

    Article  PubMed  CAS  Google Scholar 

  • Gondo T, Tsuruta S, Akashi R, Kawamura O, Hoffmann F (2005) Green, herbicide-resistant plants by particle inflow gun-mediated gene transfer to diploid bahiagrass (Paspalum notatum). J Plant Physiol 162:1367–1375

    Article  PubMed  CAS  Google Scholar 

  • Hails RS, Morley K (2005) Genes invading new populations: a risk assessment perspective. Trends Ecol Evol 20:245–252

    Article  PubMed  Google Scholar 

  • Hanna WW, Burton GW (1986) Cytogenetics and breeding behavior of an apomictic triploid in bahiagrass. J Hered 77:457–459

    Google Scholar 

  • Haygood R, Ives AR, Andow DA (2004) Population genetics of transgene containment. Ecol Lett 7:213–220

    Article  Google Scholar 

  • Hoyle M, Hayter K, Cresswell JE (2007) Effect of pollinator abundance on self-fertilization and gene flow: application to GM canola. Ecol Appl 17:2123–2135

    Article  PubMed  Google Scholar 

  • Jackson MW, Stinchcombe JR, Korves TM, Schmitt J (2004) Costs and benefits of cold tolerance in transgenic Arabidopsis thaliana. Mol Ecol 13:3609–3615

    Article  PubMed  CAS  Google Scholar 

  • James VA, Neibaur I, Altpeter F (2008) Stress inducible expression of DREB1A transcription factor from xeric Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Res 17:93–104

    Article  PubMed  CAS  Google Scholar 

  • Jia S, Wang F, Shi L, Yuan Q, Liu W, Liao Y, Li S, Jin W, Peng H (2007) Transgene flow to hybrid rice and its male-sterile lines. Transgenic Res 16:491–501

    Article  PubMed  CAS  Google Scholar 

  • Johnson PG, Larson SR, Anderton AL, Patterson JT, Cattani DJ, Nelson EK (2006) Pollen-mediated gene flow from Kentucky bluegrass under cultivated field conditions. Crop Sci 46:1990–1997

    Article  CAS  Google Scholar 

  • Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol Syst 38:847–876

    Article  Google Scholar 

  • Luciani G, Altpeter F, Yactayo-Chang J, Zhang H, Gallo M, Meagher R, Wofford D (2007) Expression of cry1Fa in bahiagrass enhances resistance to fall armyworm. Crop Sci 47:2430–2436

    Article  CAS  Google Scholar 

  • Martinez EJ, Urbani MH, Quarin CL, Ortiz JPA (2001) Inheritance of apospory in bahiagrass, Paspalum notatum. Hereditas 135:19–25

    Article  PubMed  CAS  Google Scholar 

  • Martinez EJ, Hopp HE, Stein J, Ortiz JPA, Quarin CL (2003) Genetic characterization of apospory in tetraploid Paspalum notatum based on the identification of linked molecular markers. Mol Breed 12:319–327

    Article  CAS  Google Scholar 

  • Martinez EJ, Acuna CA, Hojsgaard DH, Tcach MA, Quarin CL (2007) Segregation for sexual seed production in Paspalum as directed by male gametes of apomictic triploid plants. Ann Bot 100:1239–1247

    Article  PubMed  CAS  Google Scholar 

  • Martonfiova L, Majesky L, Martonfi P (2007) Polyploid progeny from crosses between diploid sexuals and tetraploid apomictic pollen donors in Taraxacum sect. Ruderalia. Acta Biol Crac Ser Bot 49:47–54

    Google Scholar 

  • Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108

    Article  PubMed  CAS  Google Scholar 

  • Messeguer J (2003) Gene flow assessment in transgenic plants. Plant Cell Tissue Org 73:201–212

    Article  CAS  Google Scholar 

  • Mogie M (1988) A model for the evolution and control of generative apomixis. Biol J Linn Soc 35:127153

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nogler GA (1984) Genetics of apospory in apomictic Ranunculus auricomus V. Conclusions. Bot Helv 94:411–422

    Google Scholar 

  • Ochatt S (2008) Flow cytometry in plant breeding. Cytometry 73A:581–598

    Article  CAS  Google Scholar 

  • Ortiz JPA, Pessiono SC, Leblanc O, Hayward MD, Quarin CL (1997) Genetic fingerprinting for determining the mode of reproduction in Paspalum notatum, a subtropical apomictic forage grass. Theor Appl Genet 95:850–856

    Article  CAS  Google Scholar 

  • Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Crit Rev Plant Sci 25:199–214

    Article  Google Scholar 

  • Pupilli F, Lambobarda P, Caceres ME, Quarin CL, Arcioni S (2001) The chromosome segment related to apomixis in Paspalum simplex is homeologous to the telomeric region of the long arm of rice chromosome 12. Mol Breed 8:53–61

    Article  CAS  Google Scholar 

  • Quarin CL (1992) The nature of apomixis and its origin in panicoid grasses. Apomixis Newsl 5:8–15

    Google Scholar 

  • Quarin CL, Hanna WW (1980) Effect of three ploidy levels on meiosis and mode of reproduction in Paspalum hexastachyum. Crop Sci 20:69–75

    Article  Google Scholar 

  • Quarin CL, Hanna WW, Fernandes A (1982) Genetic studies in diploid and tetraploid Paspalum species—embryo sac development, chromosome behavior and fertility in Paspalum cromyorrhizon, Paspalum laxum and Paspalum proliferum. J Hered 73:254–256

    Google Scholar 

  • Quarin CL, Burson BL, Burton GW (1984) Cytology of intra- and inter-specific hybrids between two cytotypes of Paspalum notatum and P. cromyorrhizon. Bot Gaz 145:420–426

    Article  Google Scholar 

  • Quarin CL, Norrmann GA, Urbani M (1989) Polyploidization in aposporous Paspalum species. Apomixis Newsl 1:28–29

    Google Scholar 

  • Quarin CL, Espinoza F, Martinez EJ, Pessino SC, Bovo OA (2001) A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sex Plant Reprod 13:243–249

    Article  Google Scholar 

  • Roux N (2003) Rapid detection of aneuploidy in Musa using flow cytometry. Plant Cell Rep 21:483–490

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sandhu S, Altpeter F (2008) Co-integration, co-expression and inheritance of unlinked minimal transgene expression cassettes in apomictic turf and forage grass (Paspalum notatum Flugge). Plant Cell Rep 27:1755–1765

    Article  PubMed  CAS  Google Scholar 

  • Sandhu S, Altpeter F, Blount AR (2007) Apomictic bahiagrass expressing the bar gene is highly resistant to glufosinate under field conditions. Crop Sci 47:1691–1697

    Article  CAS  Google Scholar 

  • Savidan Y (1981) Genetics and utilization of apomixis for the improvement of guineagrass (Panicum maximum Jacq.). Proc XIV Intl Grassland Congr, Lexington, pp 182–184

    Google Scholar 

  • Sherwood RT, Berg CC, Young BA (1994) Inheritance of apospory in buffelgrass. Crop Sci 34:1490–1494

    Google Scholar 

  • Smith RL, Grando MF, Li YY, Seib JC, Shatters RG Jr (2002) Transformation of Bahiagrass (Paspalum notatum Flugge). Plant Cell Rep 20:1017–1021

    Article  CAS  Google Scholar 

  • Stein J, Quarin CL, Martinez EJ, Pessino SC (2004) Tetraploid races of Paspalum notatum show polysomic inheritance and preferential chromosome pairing around the apospory-controlling locus. Theor Appl Genet 109:186–191

    Article  PubMed  CAS  Google Scholar 

  • Stewart CN Jr, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nat Genet 4:806–817

    Article  CAS  Google Scholar 

  • Taliaferro CM, Hopkins AA, Henthorn JC, Murphy CD, Edwards RM (1997) Use of flow cytometry to estimate ploidy level in Cynodon species. Int Turfgrass Soc Res J 8:385–392

    Google Scholar 

  • Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2519–2523

    PubMed  CAS  Google Scholar 

  • Tischler CR, Burson BL (1995) Evaluating different bahiagrass cytotypes for heat tolerance and leaf epicuticular wax content. Euphytica 84:229–235

    Article  Google Scholar 

  • Valkonen JPT (1994) Nuclear DNA content of the Solanum spp. In the series etuberosa as determined by laser flow cytometry. Ann Appl Biol 125:589–600

    Article  Google Scholar 

  • Wang ZY, Lawrence A, Hopkins A, Bell J, Scott M (2004) Pollen-mediated transgene flow in the wind-pollinated grass species tall fescue (Festuca arundinaceae Schreb.). Mol Breed 14:47–60

    Article  Google Scholar 

  • Wang J, Yang X, Li Y, Elliot PF (2006) Pollination competition effects on gene flow estimation: using regular vs. male-sterile bait plants. Agron J 98:1060–1064

    Article  Google Scholar 

  • Warwick SI, Legere A, Simard M-J, James T (2008) Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol Ecol 17:1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Watrud LS, Lee HE, Fairbrother A, Burdick C, Reichman JR, Bollman M, Strom M, King Gm, Van de Water PK (2004) Evidence of landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc Natl Acad Sci USA 101:14533–14538

    Article  PubMed  CAS  Google Scholar 

  • Wu KK, Burnquist W, Sorells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  Google Scholar 

  • Young BA, Sherwood RT, Bashaw EC (1979) Cleared-pistil and thick-sectioning techniques for detecting aposporous apomixis in grasses. Can J Bot 57:1668–1672

    Article  Google Scholar 

  • Yuan QH, Shi L, Wang F, Cao B, Qian Q, Lei XM, Liao YL, Liu WG, Cheng L, Jia SR (2007) Investigation of rice transgene flow in compass sectors by using male sterile line as a pollen detector. Theor Appl Genet 115:549–560

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Lomba P, Altpeter F (2007) Improved turf quality of transgenic bahiagrass (Paspalum notatum Flugge) constitutively expressing the ATHB16 gene, a repressor of cell expansion. Mol Breed 20:415–423

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by USDA-CSREES Biotechnology Risk Assessment program. We are grateful to Carlos A. Acuna (Agronomy Department, University of Florida) for his help with embryo sac analysis. We are thankful to Neal Benson (Genetics Institute, University of Florida) and Richard Fethiere (Agronomy Department, University of Florida) for their assistance with flow cytometric analysis, Jeff Seib (Agronomy Department, University of Florida) for training Sukhpreet Sandhu in safe handling of radioisotopes, Carlos Alvarado (Agronomy Department, University of Florida) for excellent technical assistance and Hangning Zhang (Agronomy Department, University of Florida) for his help with molecular analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredy Altpeter.

Additional information

Communicated by B. Friebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandhu, S., James, V.A., Quesenberry, K.H. et al. Risk assessment of transgenic apomictic tetraploid bahiagrass, cytogenetics, breeding behavior and performance of intra-specific hybrids. Theor Appl Genet 119, 1383–1395 (2009). https://doi.org/10.1007/s00122-009-1142-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1142-y

Keywords

Navigation