Skip to main content
Log in

Look before you leap: a new approach to mapping QTL

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In this paper, we present an innovative and powerful approach for mapping quantitative trait loci (QTL) in experimental populations. This deviates from the traditional approach of (composite) interval mapping which uses a QTL profile to simultaneously determine the number and location of QTL. Instead, we look before we leap by employing separate detection and localization stages. In the detection stage, we use an iterative variable selection process coupled with permutation to identify the number and synteny of QTL. In the localization stage, we position the detected QTL through a series of one-dimensional interval mapping scans. Results from a detailed simulation study and real analysis of wheat data are presented. We achieve impressive increases in the power of QTL detection compared to composite interval mapping. We also accurately estimate the size and position of QTL. An R library, DLMap, implements the methods described here and is freely available from CRAN (http://cran.r-project.org/).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baierl A, Bogdan M, Frommlet F, Futschik A (2006) On locating multiple interacting quantitative trait loci in intercross designs. Genetics 173:1693–1703

    Article  PubMed  CAS  Google Scholar 

  • Bogdan M, Ghosh JK, Doerge RW (2004) Modifying the Schwarz Bayesian information criterion to locate multiple interacting quantitative trait loci. Genetics 167:989–999

    Article  PubMed  CAS  Google Scholar 

  • Broman KW, Speed TP (2002) A model selection approach for the identification of quantitative trait loci in experimental crosses. J R Stat Soc B 64:641–656

    Article  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  • Churchill G, Doerge R (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Daw EW, Thompson EA, Wijsman EM (2000) Bias in multipoint linkage analysis arising from map misspecification. Genet Epid 19:366–380

    Article  CAS  Google Scholar 

  • Eckermann PJ, Verbyla AP, Cullis BR, Thompson R (2001) The analysis of quantitative traits in wheat mapping populations. Aust J Agric Res 52:1195–1206

    Article  CAS  Google Scholar 

  • George AW, Visscher PM, Haley CS (2000) Mapping quantitative trait loci in complex pedigrees: a two step variance component approach. Genetics 156:2081–2092

    PubMed  CAS  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml User Guide Release 2.0. VSN International Ltd., Hemel Hempstead, HP11ESJ, UK

    Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    PubMed  CAS  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    PubMed  CAS  Google Scholar 

  • Lee SH, Van der Werf JHJ (2006) Simultaneous fine mapping of multiple closely linked quantitative trait loci using combined linkage disequilibrium and linkage with a general pedigree. Genetics 173:2329–2337

    Article  PubMed  CAS  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  Google Scholar 

  • Li H, Ribaut JM, Li Z, Wang J (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116:243–260

    Article  PubMed  Google Scholar 

  • Manichaikul A, Moon JY, Sen S, Yandell BS, Broman KW (2009) A model selection approach for the identification of quantitative trait loci in experimental crosses, allowing epistasis. Genetics 181:1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Mares DJ, Campbell AW (2001) Mapping components of flour and noodle colour in Australian wheat. Aust J Agric Res 52:1297–1309

    Article  CAS  Google Scholar 

  • Martinez O, Curnow RN (1992) Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor Appl Genet 85:480–488

    Article  Google Scholar 

  • Piepho HP (2000) A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. Genetics 156:2043–2050

    PubMed  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, The R Core Team (2008) nlme: linear and nonlinear mixed effects models. R package version 3.1-88

  • Raman R, Raman H, Martin P (2007) Functional gene markers for polyphenol oxidase locus in bread wheat (triticum aestivum l). Mol Breed 19:315–328

    Article  CAS  Google Scholar 

  • Self SG, Liang K (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 82:605–610

    Article  Google Scholar 

  • Smith AB, Lim P, Cullis BR (2006) The design and analysis of multi-phase plant breeding experiments. J Agric Sci 144:393–409

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org, ISBN 3-900051-07-0

  • Verbyla AP, Cullis BR, Thompson R (2007) The analysis of QTL by simultaneous use of the full linkage map. Theor Appl Genet 116:95–111

    Article  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2005) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC

    Google Scholar 

  • Whittaker CJ, Curnow RN, Haley CS, Thompson R (1995) Using marker-maps in marker-assisted selection. Genet Res 66:255–265

    Article  PubMed  CAS  Google Scholar 

  • Yi N, Shriner D (2008) Advances in Bayesian multiple quantitative trait loci mapping in experimental crosses. Heredity 100:240–252

    Article  PubMed  CAS  Google Scholar 

  • Yi N, Yandell BS, Churchill GA, Allison DB, Eisen EJ, Pomp D (2005) Bayesian model selection for genome-wide epistatic quantitaive trait loci analysis. Genetics 170:1333–1344

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Pressoir P, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhang W, Dubcovsky J (2008) Association between allelic variation at the phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor Appl Genet 116:635–645

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew W. George.

Additional information

Communicated by M. Sillanpaa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, B.E., George, A.W. Look before you leap: a new approach to mapping QTL. Theor Appl Genet 119, 899–911 (2009). https://doi.org/10.1007/s00122-009-1098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1098-y

Keywords

Navigation