Skip to main content
Log in

Robust Bayesian mapping of quantitative trait loci using Student-t distribution for residual

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In most quantitative trait loci (QTL) mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may affect the accuracy of QTL detection, leading to detection of false positive QTL. To improve the robustness of QTL mapping methods, we replace the normal distribution assumption for residuals in a multiple QTL model with a Student-t distribution that is able to accommodate residual outliers. A Robust Bayesian mapping strategy is proposed on the basis of the Bayesian shrinkage analysis for QTL effects. The simulations show that Robust Bayesian mapping approach can substantially increase the power of QTL detection when the normality assumption does not hold and applying it to data already normally distributed does not influence the result. The proposed QTL mapping method is applied to mapping QTL for the traits associated with physics–chemical characters and quality in rice. Similarly to the simulation study in the real data case the robust approach was able to detect additional QTLs when compared to the traditional approach. The program to implement the method is available on request from the first or the corresponding author.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andrews DF, Mallows CL (1974) Scale mixtures of normal distributions. J Roy Stat Soc Ser B 36:99–102

    Google Scholar 

  • Bao JS, Xia YW (1999) Genetic control of the paste viscosity characteristics in indica rice (Oryza sativa L.). Theor Appl Genet 98:1120–1124

    Article  Google Scholar 

  • Coppieters W, Kvasz A, Farnir F, Arranz JJ, Grisart B, Mackinnon M, Georges M (1998) A rank-based nonparametric method for mapping quantitative trait loci in outbred half-sib pedigrees: application to milk production in a granddaughter design. Genetics 149:1547–1555

    PubMed  CAS  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1980) Iteratively reweighted least squares for linear regression when errors are normal/independent distributed. In: Krishnaiah PR (ed) Multivariate analysis. North-Holland, Amsterdam

    Google Scholar 

  • Diao G, Lin DY (2005) A powerful and robust method for mapping quantitative trait loci in general pedigrees. Am J Hum Genet 77:97–111

    Article  PubMed  CAS  Google Scholar 

  • Diao G, Lin DY, Zou F (2004) Mapping quantitative trait loci with censored observations. Genetics 168:1689–1698

    Article  PubMed  CAS  Google Scholar 

  • Elsen JM, Mangin B, Goffinet B, Boichard D, Le RP (1999) Alternative models for QTL detection in livestock I. General introduction. Genet Sel Evol 31:213–224

    Article  Google Scholar 

  • Feenstra B, Skovgaard IM (2004) A quantitative trait locus mixture model that avoids spurious LOD score peaks. Genetics 167:959–965

    Article  PubMed  CAS  Google Scholar 

  • Fernandez C, Steel M (1998) On Bayesian modeling of fat tails and skewness. J Am Statist Assoc 93:359–371

    Article  Google Scholar 

  • Goffinet B, Le RP, Boichard D, Elsen JM, Mangin B (1999) Alternative models for QTL detection in livestock III. Heteroskedastic model and models corresponding to several distributions of the QTL effect. Genet Sel Evol 31:341–350

    Article  Google Scholar 

  • Hackett CA (1997) Model diagnostics for fitting QTL models to trait and marker data by interval mapping. Heredity 79:319–328

    Article  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  Google Scholar 

  • Jamrozik J, Stranden I, Schaeffer LR (2004) Random regression test-day models with residuals following a Student’s-t distribution. J Dairy Sci 87:699–705

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC (1992) A general mixture model for mapping quantitative trait loci by using molecular markers. Theor Appl Genet 85:252–260

    Article  CAS  Google Scholar 

  • Kruglyak L, Lander ES (1995) A nonparametric approach for mapping quantitative trait loci. Genetics 139:1421–1428

    PubMed  CAS  Google Scholar 

  • Lange K, Sinsheimer JS (1993) Normal/independent distributions and their applications in robust regression. J Am Stat Assoc 2:175–198

    Google Scholar 

  • Lange KL, Little RJA, Taylor JMG (1989) Robust statistical modelling using the t-distribution. J Am Stat Assoc 84:881–896

    Article  Google Scholar 

  • Liu C (1996) Robust Bayesian multivariate linear regression with incomplete data. J Am Stat Assoc 435:1219–1227

    Article  Google Scholar 

  • Mangin B, Goffinet B, Le RP, Boichard D, Elsen JM (1999) Alternative models for QTL detection in livestock II. Likelihood approximations and sire marker genotype estimation. Genet Sel Evol 31:225–237

    Article  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1091

    Article  CAS  Google Scholar 

  • Pinheiro JC, Liu CH, Wu YN (2001) Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate t distribution. J Comput Graph Stat 10:249–276

    Article  Google Scholar 

  • Rebaï A (1997) Comparison of methods for regression interval mapping in QTL analysis with non-normal traits. Genet Res 69:69–74

    Article  Google Scholar 

  • Ripley B (1987) Stochastic simulation. Wiley, New York

    Google Scholar 

  • Rogers WH, Tukey JW (1972) Understanding some long-tailed distributions. Stat Neerl 26:211–226

    Article  Google Scholar 

  • Rohr PV, Hoeschele I (2002) Bayesian QTL mapping using skewed Student-t distributions. Genet Sel Evol 34:1–21

    Article  Google Scholar 

  • Rosa GJM, Gianola D, Padovani CR (2004) Bayesian longitudinal data analysis with mixed models and thick-tailed distributions using MCMC. J Appl Stat 7:855–873

    Article  Google Scholar 

  • Rosa GJM, Padovani CR, Gianola D (2003) Robust linear mixed models with normal/independent distributions and Bayesian MCMC implementation. Biom J 5:573–590

    Article  Google Scholar 

  • Sillanpää MJ, Arjas E (1998) Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics 148:1373–1388

    PubMed  Google Scholar 

  • Sillanpää MJ, Arjas E (1999) Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics 151:1605–1619

    PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W.H. Freeman, New York

    Google Scholar 

  • Stranden I, Gianola D (1999) Mixed effects linear models with t-distributions for quantitative genetic analysis: a Bayesian approach. Genet Sel Evol 31:25–42

    Article  Google Scholar 

  • Symons RC, Daly MJ, Fridlyand J, Speed TP, Cook WD, Gerondakis S, Harris AW, Foote SJ (2002) Multiple genetic loci modify susceptibility to plasmacytoma-related morbidity in Eμ-v-abl transgenic mice. Proc Natl Acad Sci 99:11299–11304

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Zhang YM, Li X, Masinde GL, Mohan S, Baylink DJ, Xu S (2005) Bayesian shrinkage estimation of quantitative trait loci parameters. Genetics 170:465–480

    Article  PubMed  CAS  Google Scholar 

  • Yang R, Xu S (2007) Bayesian shrinkage analysis of quantitative trait loci for dynamic traits. Genetics 176:1169–1185

    Article  PubMed  CAS  Google Scholar 

  • Yang R, Yi N, Xu S (2006) Box–Cox transformation for QTL mapping. Genetica 128:133–143

    Article  PubMed  Google Scholar 

  • Yi N, Xu S (2000) Bayesian mapping of quantitative trait loci for complex binary traits. Genetics 155:1391–1403

    PubMed  CAS  Google Scholar 

  • Zhang YM, Xu S (2005) Advanced statistical methods for detecting multiple quantitative trait loci. Recent Res Devel Genet Breed 2:1–23

    Google Scholar 

  • Zou F, Yandell BS, Fine JP (2003) Rank-based statistical methodologies for quantitative trait locus mapping. Genetics 165:1599–1605

    PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the Chinese National Natural Science Foundation Grant 30471236 to RY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runqing Yang.

Additional information

Communicated by M. Sillanpää.

Xin Wang and Zhongze Piao contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Piao, Z., Wang, B. et al. Robust Bayesian mapping of quantitative trait loci using Student-t distribution for residual. Theor Appl Genet 118, 609–617 (2009). https://doi.org/10.1007/s00122-008-0924-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0924-y

Keywords

Navigation