Molecular marker-based genetic diversity assessment of Striga-resistant maize inbred lines


Striga-resistant maize inbred lines are of interest to maize breeding programs in the savannas of Africa where the parasitic weed is endemic and causes severe yield losses in tropical maize. Assessment of the genetic diversity of such inbred lines is useful for their systematic and efficient use in a breeding program. Diversity analysis of 41 Striga-resistant maize inbred lines was conducted using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers to examine the genetic relationships among these lines and to determine the level of genetic diversity that exists within and between their source populations. The two marker systems generated 262 and 101 polymorphic fragments, respectively. Genetic similarity (GS) values among all possible pairs of inbred lines varied from 0.45 to 0.95, with a mean of 0.61±0.002 for AFLPs, and from 0.21 to 0.92, with a mean of 0.48±0.003, for SSRs. The inbred lines from each source population exhibited a broad range of GS values with the two types of markers. Both AFLPs and SSRs revealed similar levels of within population genetic variation for all source populations. Cluster and principal component analysis of GS estimates with the two markers revealed clear differentiation of the Striga-resistant inbred lines into groups according to their source populations. There was clear separation between early- and late-maturing Striga-resistant inbred lines. Considering the paucity of germplasm with good levels of resistance to Striga in maize, the broad genetic diversity detected within and among source populations demonstrates the genetic potential that exists to improve maize for resistance to Striga.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Ajmone-Marsan P, Livini C, Messmer MM, Melchinger AE, Motto M (1998) Cluster analysis of RFLP data from related maize inbred lines of the BSSS and LSC heterotic groups and comparison with pedigree data. Euphytica 60:139–148

    Google Scholar 

  2. Barbosa AMM, Geraldi IO, Benchimol LL, Garcia AAF, Souza CL Jr, Souza AP (2003) Relationship of intra- and interpopulation tropical maize single cross hybrid performance and genetic distances computer from AFLP and SSR markers. Euphytica 130:97–99

    Google Scholar 

  3. Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I (2003) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107:736–744

    Article  CAS  PubMed  Google Scholar 

  4. Bernardo R, Romero-Severson J, Ziegle J, Hauser J, Joe L, Hookstra G, Doerge RW (2000) Parental contribution and coefficient of coancestry among maize inbreds: pedigree, RFLP, and SSR data. Theor Appl Genet 100:552–556

    Google Scholar 

  5. Berner DK, Kling JG, Singh BB (1995) Striga research and control: a perspective from Africa. Plant Dis 79:652–660

    Google Scholar 

  6. Bohen M, Utz FH, Melchinger AE (1999) Genetic similarities among winter wheat cultivars determined on the basis of PFLPs, AFLPs and SSRs and their use for predicting progeny variance. Crop Sci 39:228–237

    Google Scholar 

  7. Dice LR (1945) Measures of the amount of ecological association between species. Ecology 26:297–302

    Google Scholar 

  8. Efron Y, Kim SK, Parkinson V, Bosque-Perez N (1989) IITA’s strategies in developing Striga resistance maize germplasm. In: Robinson TO, Broad HR (eds) Proc FAO/OAU all-African government; consultation on Striga control. Maroua, Cameroon, pp 141–153

  9. Ejeta G, Butler LG (1993) Host plant resistance to Striga. In: Buxton DR (ed) International crop science I. Crop Science Society of America, Madison, pp 561–569

    Google Scholar 

  10. Enoki H, Sato H, Koinuma K (2002) SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theor Appl Genet 104:1270–1277

    Article  CAS  PubMed  Google Scholar 

  11. Fisher MC, Koenig G, White TJ, Taylor JW (2000) A test for concordance between the multilocus genealogies of genes and microsatellites in the pathogenic fungus Coccidioides immitis. Mol Biol Evol 17:1164–1174

    Google Scholar 

  12. Guadagnuolo R, Bianchi DS, Felber F (2001) Specific genetic markers for wheat, spelt, and four wild species: comparison of isozymes, RAPDs, and wheat microsatellites. Genome 44:610–621

    Google Scholar 

  13. Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429

    Article  Google Scholar 

  14. Kim SK (1991) Breeding maize for Striga tolerance and the development of a field infestation technique. In: Kim SK (ed) Combating Striga in Africa. Proc Int Workshop IITA. ICRISAT/ IDRC, IITA, Ibadan, pp 96–108

  15. Kim SK, Winslow M (1991) Progress in breeding for Striga tolerance/resistance at IITA. In: Ransom K, Musselman LJ, Worsham AD, Parker C (eds) Proc 5th Int Symp Parasitic Weeds. CIMMYT, Mexico, pp 494–499

  16. Kim SK, Fajemisin JM, The C, Adepoju A, Kling J, Badu-Apraku B, Versteeg M, Carsky R, Lagoke STO (1998) Development of synthetic maize populations for resistance to Striga hermonthica. Plant Breed 117:203–209

    Google Scholar 

  17. Kling JG, Fajemisin JM, Badu-Apraku B, Diallo A, Menkir A, Melake-Berhan A (2000) Striga resistance breeding in maize. In: Haussmann BIG, Hess DE, Koyama ML, Grivet L, Rattunde HFW, Geiger HH (eds) Breeding for Striga resistance in cereals. Proc Workshop IITA. Margraf Verlag, Weikersheim, Germany, pp 103–118

  18. Koyama ML (2000) Molecular markers for the study of pathogen variability: implications for breeding resistance to Striga hermonthica. In: Haussmann BIG, Hess DE, Koyama ML, Grivet L, Rattunde HFW, Geiger HH (eds) Breeding for Striga resistance in cereals. Proc Workshop IITA. Margraf Verlag, Weikersheim, Germany, pp 227–245

  19. Lűbberstedt T, Melchinger AE, DuBle C, Vuylsteak M, Kuiper M (2000) Relationships among early European maize inbreds: IV. Genetic diversity revealed with AFLP markers and comparison with RFLP, RAPD and pedigree data. Crop Sci 40:783–791

    Google Scholar 

  20. Labate JA, Lamkey RK, Lee M, Woodman WL (1999) Population genetics of increased hybrid performance between two maize populations under reciprocal recurrent selection. In: Coors JG, Pandey S (eds) Proc Int Symp Genet Exploitation Heterosis Crops. ASA, CSSA and SSSA, Madison, Wis., pp 127–137

  21. Lagoke STO, Parkinson V, Agunbiade RM (1991) Parasitic weeds and control methods in Africa. In: Kim SK (ed) Combating Striga in Africa. In: Proc Int Workshop IITA. ICRISAT and IDRC, IITA, Ibadan

  22. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  23. Matsuoka, Y, Mitchell SE, Kresovich S, Goodmann M, Doebley J (2002) Microsatellites in Zea—variability, patterns of mutations, and use for evolutionary studies. Theor Appl Genet 104:436–450

    Article  CAS  PubMed  Google Scholar 

  24. Mumm RH, Dudley JW (1994) A classification of 148 US maize inbreds. I. Cluster analysis based on RFLPs. Crop Sci 34:842–851

    Google Scholar 

  25. Mumm RH, Dudley JW (1995) A PC SAS computer program to generate a dissimilarity matrix for cluster analysis. Crop Sci 35:925–927

    Google Scholar 

  26. Musselman LJ, Bhrathalakshmi SB, Safa DA, Knepper KI, Mohamed, White CL (1991) Recent research on the biology of Striga asiatica, S. gesnerioides and S. hermonthica. In: Kim SK (ed) Combating Striga in Africa. Proc Int Workshop IITA. ICRISAT/IDRC, IITA, Ibadan, pp 31–41

  27. Nei M (1987) Genetic variation within species. Molecular evolutionary genetics. Columbia University Press, New York

  28. Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera-implications for the transferability of SSRs. Plant Mol Biol Evol 15:1275–1287

    Google Scholar 

  29. Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl Genet 97:1248–1255

    Article  CAS  Google Scholar 

  30. Pinto LR, Vieira MLC, de Souza CL Jr, de Souza AP (2003) Genetic-diversity assessed by microsatellites in tropical maize populations submitted to a high-intensity reciprocal recurrent selection. Euphytica 134:277–286

    Google Scholar 

  31. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalaski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 3:225–223

    Google Scholar 

  32. Ramaiah KV (1987) Breeding cereal grains for resistance to witchweed. In: Musselman LJ (ed) Parasitic weeds in agriculture, vol 1. Striga. CRC Press, Boca Raton, pp 281–306

  33. Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Beck D, Bohn M, Frisch M (2003) Use of SSRs for establishing heterotic groups in subtropical maize. Theor Appl Genet 107:947–957

    Google Scholar 

  34. Rohlf FJ (1998) ntsys-pc. Numerical taxonomy and multivariate analysis system, version 2.00. Exeter Software, Setauket

    Google Scholar 

  35. Russell JP, Fuller JD, Macaulay M, Hatz BG, Jahoor A, Powell W, Waugh R (1997) Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95:714–722

    CAS  Google Scholar 

  36. Saghai Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 91:5466–5470

    PubMed  Google Scholar 

  37. SAS Institute (1997) SAS/STAT software: changes and enhancement through release 6.12. SAS Institute, Cary, N.C.

  38. Senior MJL, Murphy JP, Goodman MM, Stuber CW (1998) Utility of SSRs for determining genetic similarity and relationships in maize using an agarose gel system. Crop Sci 38:1088–1098

    Google Scholar 

  39. Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparison with data from RFLPs and pedigree. Theor Appl Genet 95:163–173

    Article  CAS  Google Scholar 

  40. Staub JE Serquen FC, Gupta M (1996) Genetic markers, map construction, and their application in plant breeding. HortSciences 31:729–741

    Google Scholar 

  41. Teulat B, Aldam C, Trehin R, Lebrun P, Barker JHA, Arnold GM, Karp A, Baudouin L, Rognon F (2000) An analysis of genetic diversity in coconut (Cocos nucifera) populations from across the geographic range using sequence-tagged microsatellites (SSRs) and AFLPs. Theor Appl Genet 100:764–771

    Google Scholar 

  42. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  43. Warburton ML, Ianchun, XX, Crossa J, Franco J, Melchinger AE, Frisch M, Bohn M, Hoisington D (2002) Genetic characterization of CIMMYT inbred maize lines and open-pollinated populations using large-scale fingerprinting methods. Crop Sci 42:1822–1840

    Google Scholar 

  44. Yap I, Nelson RJ (1996) WinBoot: a program for performing bootstrap analysis of binary data to determine the confidence limits of upgma-based dendrograms. IRRI discussion paper series no.14. International Rice Research Institute, Manila, The Philippines

Download references


This research was conducted at the International Institute of Tropical Agriculture (manuscript no. IITA 04/052/JA) and financed by IITA. The authors express their appreciation to all staff members that carried out the laboratory analyses.

Author information



Corresponding author

Correspondence to A. Menkir.

Additional information

Communicated by H.H. Geiger

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Menkir, A., Kling, J.G., Badu-Apraku, B. et al. Molecular marker-based genetic diversity assessment of Striga-resistant maize inbred lines. Theor Appl Genet 110, 1145–1153 (2005).

Download citation


  • Amplify Fragment Length Polymorphism
  • Inbred Line
  • Simple Sequence Repeat Marker
  • Genetic Similarity
  • Source Population