Skip to main content
Log in

A new approach to extending the wheat marker pool by anchored PCR amplification of compound SSRs

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A study was undertaken to determine the utility in bread wheat of anchored PCR for the development of single locus SSR markers targeted at compound repeat motifs. In anchored PCR, microsatellite amplification is achieved using a single primer complementary to the flanking sequence, and one which anchors to the repeat junction of the compound SSR. The recovery rate of useable markers was found to be similar (43%) to that reported for conventionally generated SSRs. Thus, anchored PCR can be used to reduce the costs of marker development, since it requires that only half the number of primers be synthesised. Where fluorescence-based platforms are used, marker deployment costs are lower, since only the anchoring primers need to be labelled. In addition, anchored PCR improves the recovery of useful markers, as it allows assays to be generated from microsatellite clones with repeat sequences located close to their ends, a situation where conventional PCR amplification fails as two flanking primers cannot be designed. Strategies to permit the large-scale development of compound SSR markers amplified by anchored PCR are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3a–c
Fig. 4a–c

Similar content being viewed by others

References

  • Anderson JA, Churchill GA, Autrique EJ, Tanksley SD, Sorrells ME (1993) Optimising parental selection for genetic linkage maps. Genome 36:181–186

    CAS  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels [published erratum appears in Anal Biochem (1991) 198:217] Anal Biochem 196:80–83

    Google Scholar 

  • Bryan GK, Collins AJ, Stephenson P, Orry A, Smith JB, Gale MD (1997) Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appl Genet 94:557–563

    Article  CAS  Google Scholar 

  • Chalmers KJ, Campbell AW, Kretschmer J, Karakousis A, Henschke PH, Pierens S, Harker N, Pallotta M, Cornish GB, Shariflou MR, Rampling LR, McLauchlan A, Daggard G, Sharp PJ, Holton TA, Sutherland MW, Appels R, Langridge P (2001) Construction of three linkage maps in bread wheat, Triticum aestivum. Aust J Agric Res 52:1089–1119

    Article  CAS  Google Scholar 

  • Cregan PB, Mudge J, Fickus EW, Marek LF, Danesh D, Denny R, Shoemaker RC, Matthews BF, Jarvik T, Young ND (1998) Targeted isolation of simple sequence repeat markers through the use of bacterial artificial chromosomes. Theor Appl Genet 98:919–928

    Article  Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, Van Toai TT, Lohnes DG, Chung J, Specht JE (1999) An integrated genetic linkage map of the soybean. Crop Sci 39:1464–1490

    CAS  Google Scholar 

  • Deynze AE van , Dubcovsky J, Gill KW, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for group 1 chromosomes of triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59

    Google Scholar 

  • Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:759–760

    Google Scholar 

  • Fisher PJ, Gardner RC and Richardson TE (1996) Single locus microsatellites isolated using 5′ anchored PCR. Nucleic Acids Res 21:4369–4371

    Article  Google Scholar 

  • Fisher PJ, Richardson TE, Gardner RC (1998) Characteristics of single- and multi-copy microsatellites from Pinus radiata. Theor Appl Genet 96:969–979

    CAS  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Harker N, Rampling LR, Shariflou MR, Hayden MJ, Holton TA, Morell MK, Sharp PJ, Henry RJ, Edwards KJ (2001) Microsatellites as markers for Australian wheat improvement. Aust J Agric Res 52:1121–1130

    CAS  Google Scholar 

  • Hayden MJ, Sharp PJ (2001a) Sequence tagged microsatellite profiling (STMP): A rapid technique for developing SSR markers. Nucleic Acids Res 29:e43

    Article  CAS  PubMed  Google Scholar 

  • Hayden MJ, Sharp PJ (2001b) Targeted development of informative microsatellite (SSR) markers, Nucleic Acids Res 29:e44

    Google Scholar 

  • Inoue S, Takahashi K, Ohta M (1999) Sequence analysis of genomic regions containing trinucleotide repeats isolated by a novel cloning method. Genomics 57:169–172

    Google Scholar 

  • Kammholz SJ, Campbell AW, Sutherland MW, Hollamby GJ, Martin PJ, Eastwood RF, Barclay I, Wilson RE, Brennan PS, Sheppard JA (2001) Establishment and characterisation of wheat genetic mapping populations. Aust J Agric Res 52:1079–1088

    CAS  Google Scholar 

  • Lagercrantz E, Ellegren H, Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21:1111–1115

    CAS  PubMed  Google Scholar 

  • Li C-D, Eckstein PE, Lu M, Rossnagel BG, Scoles GJ (2001) Targeted development of a microsatellite marker associated with a true loose smut resistance gene in barley (Hordeum vulgare L.). Mol Breed 8:235–242

    Article  CAS  Google Scholar 

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401

    CAS  PubMed  Google Scholar 

  • Manly KF (1998) Map Manager QTX. http://mapmgr.roswellpark.org/mmQTX.html

  • Milbourne D, Meyer RC, Collins AJ, Ramsay LD, Gebhardt C, Waugh R (1998) Isolation, characterisation and genetic mapping of simple sequence repeat loci in potato. Mol Gen Genet 259:233–245

    CAS  PubMed  Google Scholar 

  • Pestova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  CAS  PubMed  Google Scholar 

  • Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592

    CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 141:2007–2023

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sears ER (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulations and plant genetics. Heredity 20:29–45

    Google Scholar 

  • Senior ML, Chin ECL, Lee M, Smith JSC, Stuber CW (1996) Simple sequence repeat markers developed from maize sequences found in the GenBank database: Map construction. Crop Sci 36:1676–1683

    CAS  Google Scholar 

  • Varghese JP, Rudolph B, Uzunova MI, Ecke W (2000) Use of 5′-anchored primers for the enhanced recovery of specific microsatellite markers in Brassica napus L. Theor Appl Genet 101:115–119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Wheat Microsatellite Consortium who kindly gave their permission to publish the sequences of microsatellite clones included in this manuscript. This research was supported by the Value Added Wheat CRC, and Grains Research and Development Corporation, Australia, the Biotechnology and Biological Sciences Research Council, UK, and the International Atomic Energy Agency (IAEA RCA-11023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Hayden.

Additional information

Communicated by P. Langridge

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayden, M.J., Stephenson, P., Logojan, A.M. et al. A new approach to extending the wheat marker pool by anchored PCR amplification of compound SSRs. Theor Appl Genet 108, 733–742 (2004). https://doi.org/10.1007/s00122-003-1480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1480-0

Keywords

Navigation