Skip to main content
Log in

Construction of a genetic linkage map using a frame set of simple sequence repeat and high-resolution melting markers for watermelon (Citrullus spp.)

  • Research Report
  • Genetics and Breeding
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Backcross breeding programs are widely used for rapid cultivar development by introgression of valuable traits from wild-type germplasm into elite lines. For efficient introgression from a distant cross, a genetic map is useful to select markers for maintaining the genetic background of elite lines. Construction of a genetic map in watermelon has been limited on one hand, by the relatively narrow genetic background within watermelon cultigens that results in little genetic polymorphism, and on the other hand, by high segregation distortion rates (SDR) of highly polymorphic markers found in a distant cross. In this study, we tried to develop a genetic map using expressed sequence tag (EST)-based simple sequence repeat (SSR) markers; however, only 33 EST-SSRs were anchored to the map, mainly because of multi-copies of repetitive sequences and SDR in the F2 mapping population derived from a cross of PI 189225 (Citrullus amarus; previously C. lanatus ssp. citroides) and ‘TS’ (Citrullus lanatus ssp. lanatus). To obtain more candidate markers, the whole genome of both parental lines was resequenced, and 2.5 and 0.3 million singlenucleotide polymorphisms (SNPs) were identified in PI 189225 and ‘TS’, respectively. By comparing these SNPs to the reference genome, we developed 200 high-resolution melting (HRM) candidate markers for genotyping the F2 progeny. Ultimately, 103 HRM markers were located on the genetic map, and 42 EST-SSR markers were consolidated in the map. The total map length was 1178.3 cM, the average length of the linkage groups was 107.1 cM, and the average inter-marker distance was 8.24 cM. Although these markers are not evenly distributed along the genome, they are considered to be successfully anchored. The EST-SSR and HRM markers in this genetic map will be useful in breeding programs as frame markers for foreground and background selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyhan, G.E., J.D. Norton, B.R. Abrahams, and H.H. Wen, 1994. A new source of resistance to Anthracnose (Race 2) in watermelon. Hortscience 29:111–112.

    Google Scholar 

  • Elshire, R.J., J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. Buckler, and S.E. Mitchell, 2011. A robust, simple genotypingby-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379.

  • Fernandez-Silva, I., I. Eduardo, J. Blanca, C. Esteras, B. Pico, F. Nuez, P. Arus, J. Garcia-Mas, and A.J. Monforte, 2008. Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor. Appl. Genet. 118:139–150.

    Article  CAS  PubMed  Google Scholar 

  • Gusmini, G., 2005. Inheritance of fruit characteristics and disease resistance in watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai]. North Carolina State University, Ann Arbor, 3162441 Ph.D.

    Google Scholar 

  • Hasan, M.M., M.Y. Rafii, M.R. Ismail, M. Mahmood, H.A. Rahim, M.A. Alam, S. Ashkani, M.A. Malek, and M.A. Latif, 2015. Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol. Biotechnol. Equip. 29:237–254.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hashizume, T., I. Shimamoto, Y. Harushima, M. Yui, T. Sato, T. Imai, and M. Hirai, 1996. Construction of a linkage map for watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai) using random amplified polymorphic DNA (RAPD). Euphytica 90:265–273.

    Article  CAS  Google Scholar 

  • Hashizume, T., I. Shimamoto, and M. Hirai, 2003. Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] using RAPD, RFLP and ISSR markers. Theor. Appl. Genet. 106:779–785.

    CAS  PubMed  Google Scholar 

  • Inthichack, P., Y. Nishimura, and Y. Fukumoto, 2014. Effect of diurnal temperature alternations on plant growth and mineral composition in cucumber, melon and watermelon. Pak. J. Biol. Sci. 17:1030–1036.

    Article  PubMed  Google Scholar 

  • Kim, K.H., S.G. Ahn, J.H. Hwang, Y.M. Choi, H.S. Moon, and Y.H. Park, 2013. Inheritance of resistance to powdery mildew in the watermelon and development of a molecular marker for selecting resistant plants. Hortic. Environ. Biotechnol. 54:134–140.

    Article  CAS  Google Scholar 

  • Kosambi, D.D., 1944. The estimation of map distances from recombination values. Ann. Eugen. 12:172–175.

    Article  Google Scholar 

  • Levi, A., J.A. Thies, W.P. Wechter, H.F. Harrison, A.M. Simmons, U.K. Reddy, P. Nimmakayala, and Z.J. Fei, 2013. High frequency oligonucleotides: targeting active gene (HFO-TAG) markers revealed wide genetic diversity among Citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars. Genet. Resour. Crop Evol. 60:427–440.

    CAS  Google Scholar 

  • Levi, A., C.E. Thomas, T. Trebitsh, A. Salman, J. King, J. Karalius, M. Newman, O.U.K. Reddy, Y. Xu, and X. Zhang, 2006. An extended linkage map for watermelon based on SRAP, AFLP, SSR, ISSR, and RAPD markers. J. Am. Soc. Hortic. Sci. 131:393–402.

    CAS  Google Scholar 

  • Levi, A., C.E. Thomas, X.P. Zhang, T. Joobeur, R.A. Dean, T.C. Wehner, and B.R. Carle, 2001. A genetic linkage map for watermelon based on randomly amplified polymorphic DNA markers. J. Am. Soc. Hortic. Sci. 126:730–737.

    CAS  Google Scholar 

  • Levi, A., E. Thomas, T. Joobeur, X. Zhang, and A. Davis, 2002. A genetic linkage map for watermelon derived from a testcross population: ( Citrullus lanatus var. citroides x C. lanatus var. lanatus) x Citrullus colocynthis. Theor. Appl. Genet. 105:555–563.

    Article  CAS  PubMed  Google Scholar 

  • Li, H. and R. Durbin, 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li, Y.D., Z.Z. Chu, X.G. Liu, H.C. Jing, Y.G. Liu, and D.Y. Hao, 2010. A cost-effective high-resolution melting approach using the EvaGreen dye for DNA polymorphism detection and genotyping in plants. J. Integr. Plant Biol. 52:1036–1042.

    Article  CAS  PubMed  Google Scholar 

  • Nimmakayala, P., A. Levi, L. Abburi, V.L. Abburi, Y.R. Tomason, T. Saminathan, V.G. Vajja, S. Malkaram, R. Reddy, T.C. Wehner, S.E. Mitchell, and U.K. Reddy, 2014a. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC Genomics 15:767.

  • Nimmakayala, P., A. Levi, L. Abburi, V.L. Abburi, Y.R. Tomason, T. Saminathan, V.G. Vajja, S. Malkaram, R. Reddy, T.C. Wehner, S.E. Mitchell, and U.K. Reddy, 2014b. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC Genomics 15:767.

  • Petroli, C.D., C.P. Sansaloni, J. Carling, D.A. Steane, R.E. Vaillancourt, A.A. Myburg, O.B. da Silva, Jr., G.J. Pappas, Jr., A. Kilian, and D. Grattapaglia, 2012. Genomic characterization of DArT markers based on high-density linkage analysis and physical mapping to the Eucalyptus genome. PLoS One 7:e44684.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reddy, U.K., P. Nimmakayala, A. Levi, V.L. Abburi, T. Saminathan, Y.R. Tomason, G. Vajja, R. Reddy, L. Abburi, T.C. Wehner, Y. Ronin, and A. Karol, 2014. High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon. G3 (Bethesda) 4:2219–2230.

    Article  Google Scholar 

  • Ren, R., R. Ray, P. Li, J. Xu, M. Zhang, G. Liu, X. Yao, A. Kilian, and X. Yang, 2015. Construction of a high-density DArTseq SNP-based genetic map and identification of genomic regions with segregation distortion in a genetic population derived from a cross between feral and cultivated-type watermelon. Mol. Genet. Genomics 290:1457–1470.

    Article  CAS  PubMed  Google Scholar 

  • Ren, Y., H. Zhao, Q. Kou, J. Jiang, S. Guo, H. Zhang, W. Hou, X. Zou, H. Sun, G. Gong, A. Levi, and Y. Xu, 2012. A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS One 7:e29453.

  • Sonnante, G., A. Gatto, A. Morgese, F. Montemurro, G. Sarli, E. Blanco, and D. Pignone, 2011. Genetic map of artichoke x wild cardoon: toward a consensus map for Cynara cardunculus. Theor. Appl. Genet. 123:1215–1229.

    Article  PubMed  Google Scholar 

  • Soteriou, G.A., M.C. Kyriacou, A.S. Siomos, and D. Gerasopoulos, 2014. Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chem. 165:282–289.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, C.N., Jr. and L.E. Via, 1993. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748–750.

    CAS  PubMed  Google Scholar 

  • Tetteh, A.Y., T.C. Wehner, and A.R. Davis, 2013. Inheritance of Resistance to the New Race of Powdery Mildew in Watermelon. Crop Sci. 53:880–887.

    Article  Google Scholar 

  • van Ooijen, J.W., 2006. JoinMap 4: software for the calculation of genetic linkage maps in experimental population. Kyazma BV, Wageningen.

  • Verma, M. and L. Arya, 2008. Development of EST-SSRs in watermelon (Citrullus lanatus var. lanatus) and their transferability to Cucumis spp. J. Hortic. Sci. Biotechnol. 83:732–736.

    CAS  Google Scholar 

  • Xu, Y., S. Guo, H. Sun, H. Zhang, Y. Ren, H. Zhao, H. He, Y. Zhang, J. Liu, Q. Kou, W. Hou, X. Zou, J. Jiang, G. Gong, Y. Xia, X. Zhang, Y. Li, Y. Zheng, L. Mao, S. Gao, M. Huang, Y. Xu, S. Zhong, A. Bombarely, L.A. Mueller, J.J. Giovannoni, Z. Fei, J. Wang, J. Zhang, Z. Wang, J. Min, X. Guo, P. Ni, B. Wang, Y. Huang, X. Hu, S. Dong, D. Liang, J. Wang, K. Wu, X. Zhao, Z. Zheng, M. Xing, X. Liang, B. Huang, T. Lv, J. Wang, Y. Yin, J. Salse, F. Murat, W.J. Lucas, B.K. Ham, Z. Zhang, Z. Zhang, S. Huang, T. Tan, E. Pang, K. Lin, Q. Hu, H. Kuang, K. Klee, H. Schoof, H. Yi, M. Wu, R. Li, and A. Levi, 2013. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genet. 45:51–58.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gung Pyo Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhee, SJ., Han, BK., Jang, Y.J. et al. Construction of a genetic linkage map using a frame set of simple sequence repeat and high-resolution melting markers for watermelon (Citrullus spp.). Hortic. Environ. Biotechnol. 56, 669–676 (2015). https://doi.org/10.1007/s13580-015-0110-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0110-5

Additional key words

Navigation