Skip to main content
Log in

Molecular mapping of the intermedium spike-c (int-c) and non-brittle rachis 1 (btr1) loci in barley (Hordeum vulgare L.)

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract.

Lateral spikelet fertility and a non-brittle rachis are key characters in studying the evolution of barley. The fertility of lateral spikelets is controlled predominantly by the alleles at the vrs1 locus on chromosome 2HL and is modified by the alleles at the int-c locus on chromosome 4HS. The non-brittle rachis is controlled by alleles at two tightly linked loci, btr1 and btr2, on chromosome 3HS. This paper presents the integration of the int-c and btr1 loci in molecular linkage maps of barley. The int-c locus was mapped to the end of chromosome 4HS, 8.2 cM distal from the MWG2033 locus. The analysis was followed by a composite interval mapping of quantitative trait loci, which verified the position of the int-c locus. Linkage analysis using recombinant inbred lines showed that the btr1 locus is flanked between two AFLP loci, e14m27.4.1 and e15m19.7, with map distances of 3.1 cM and 4.2 cM, respectively. The molecular markers will expedite further high-density mapping of the int-c and btr1 loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komatsuda, .T., Mano, .Y. Molecular mapping of the intermedium spike-c (int-c) and non-brittle rachis 1 (btr1) loci in barley (Hordeum vulgare L.). Theor Appl Genet 105, 85–90 (2002). https://doi.org/10.1007/s00122-001-0858-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-001-0858-0

Navigation