Skip to main content
Log in

Nephrolithiasis und Nephrokalzinose bei Kindern und Jugendlichen

Nephrolithiasis and nephrocalcinosis in children and adolescents

  • Übersichten
  • Published:
Die Urologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Nephro- bzw. Urolithiasis ist, auf die gesamte Bevölkerung bezogen, eine häufige Erkrankung. Die Prävalenz der Erkrankung ist sowohl bei pädiatrischen als auch erwachsenen Patienten steigend. Die genomisch kalkulierten Prävalenzen können dabei höher als die bisherige Diagnoserate sein. Bei 30 % der pädiatrischen sowie 10 % der erwachsenen Patienten wurden monogene Nierensteinerkrankungen gefunden.

Fragestellung

Auch wenn es bei einer einmaligen Steinepisode legitim erscheint, von keiner spezifischen Grunderkrankung auszugehen, so muss beim pädiatrischen Patienten eine solche ausgeschlossen werden. Die vorliegende Arbeit erläutert deswegen ausführlich die Abklärung und Behandlung von Nierensteinen im Kindesalter.

Methoden

Die wiederholte Analyse von 24-h-Sammelurinen oder mehreren Spontanurinproben bei Säuglingen und Kleinkindern ergibt meist wegweisende Befunde. Außerdem sollte jeder entfernte Stein analysiert werden. Diesen Befunden folgt eine gerichtete genetische Diagnostik. Bildgebung der ersten Wahl ist eine Ultraschalluntersuchung. Bei symptomatischen Steinen sollte eine möglichst minimal-invasive Methode zur Steinentfernung gewählt werden, aber nicht jeder Stein muss unbedingt entfernt werden. Bei spezifischer Diagnose muss eine Familienabklärung erfolgen.

Schlussfolgerung

Frühzeitige Diagnostik ist wichtig, um trotz der wenigen Therapieoptionen Rezidive zu vermeiden. Eine verschleppte Diagnose kann für die Patienten katastrophale Konsequenzen haben (z. B. Niereninsuffizienz). Schon alleine die Standardbehandlung mit Hyperhydratation und Alkalizitrat-Behandlung hilft oft, Rezidive zu verhindern. Neue Therapieoptionen lassen hoffen, dass Steinerkrankungen besser behandelbar werden. Eine frühzeitige Diagnose vermeidet oft problematische Verläufe.

Abstract

Background

Nephro- or urolithiasis is a common disease. The prevalence of the disease is increasing in both pediatric and adult patients. The genomic calculation of prevalence may reveal higher levels than the previous diagnosis rates. Monogenic kidney stone disease has been identified in 30% of pediatric and 10% of adult patients.

Objectives

Even if it seems legitimate to assume that there is no specific underlying disease in the case of a one-time stone episode, such a disease must be excluded in the pediatric patient. Therefore, the present study discusses in detail the evaluation and treatment of kidney stones in children.

Methods

Repeated analysis of 24 h urine samples, or multiple spot urine samples in infants and young children, usually provides evidence of the underlying pathology. In addition, any stone removed should be analyzed. These findings are followed by directed genetic diagnostics. Ultrasonography is the preferred diagnostic method. For symptomatic stones, a minimally invasive method of stone removal is chosen if possible, but not every stone needs to be removed. Family workup must be performed, when a specific diagnosis is made in an index case.

Conclusion

Early diagnosis is important to avoid recurrences despite the few treatment options available. Delayed diagnosis can have catastrophic consequences for patients (e.g., renal failure). Standard treatment with hyperhydration and alkali citrate treatment alone often helps prevent recurrences. New therapeutic options give hope that stone diseases will become more treatable. Finally, early diagnosis often avoids problematic courses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Morales-Martínez A, Melgarejo-Segura MT, Arrabal-Polo MA (2021) Urinary stone epidemiology in Spain and worldwide. Arch Esp Urol 74(1):4–14

    PubMed  Google Scholar 

  2. Ticinesi A et al (2018) Determinants of calcium and oxalate excretion in subjects with calcium nephrolithiasis: the role of metabolic syndrome traits. J Nephrol 31(3):395–403. https://doi.org/10.1007/s40620-017-0453-3

    Article  PubMed  CAS  Google Scholar 

  3. Spivacow FR, del Valle EE, Boailchuk JA, Sandoval Díaz G, Rodríguez Ugarte V, Arreaga Álvarez Z (2020) Metabolic risk factors in children with kidney stone disease: an update. Pediatr Nephrol 35(11):2107–2112. https://doi.org/10.1007/s00467-020-04660-x

    Article  PubMed  Google Scholar 

  4. Hoppe B, Martin-Higueras C (2020) Inherited conditions resulting in nephrolithiasis. Curr Opin Pediatr 32(2):273–283. https://doi.org/10.1097/MOP.0000000000000848

    Article  PubMed  Google Scholar 

  5. Spasovski G, Beck BB, Blau N, Hoppe B, Tasic V (2010) Late diagnosis of primary hyperoxaluria after failed kidney transplantation. Int Urol Nephrol 42(3):825–829. https://doi.org/10.1007/s11255-009-9690-2

    Article  PubMed  Google Scholar 

  6. Talati JJ et al (2018) Primary hyperoxaluria in populations of Pakistan origin: results from a literature review and two major registries. Urolithiasis 46(2):187–195. https://doi.org/10.1007/s00240-017-0996-8

    Article  PubMed  Google Scholar 

  7. Singh P, Harris PC, Sas DJ, Lieske JC (2022) The genetics of kidney stone disease and nephrocalcinosis. Nat Rev Nephrol 18(4):224–240. https://doi.org/10.1038/s41581-021-00513-4

    Article  PubMed  Google Scholar 

  8. Radmayr C et al (2021) EAU guidelines on paediatric urology 2021. European Asociation of Urology, Arnhem

    Google Scholar 

  9. Seitz C, Bach T, Bader M, Berg W, Knoll T, Neisius A, Netsch C, Schönthaler M, Siener R, Stein R, Straub M, Strohmaier W (2019) S2k-Leitlinie zur Diagnostik, Therapie und Metaphylaxe der Urolithiasis (AWMF Registernummer 043-025). https://www.awmf.org/leitlinien/detail/ll/043-025.html (AWMF online). Zugegriffen: 31.05.2019

  10. Grivas N et al (2020) Imaging modalities and treatment of paediatric upper tract urolithiasis: a systematic review and update on behalf of the EAU urolithiasis guidelines panel. J Pediatr Urol 16(5):612–624. https://doi.org/10.1016/j.jpurol.2020.07.003

    Article  PubMed  Google Scholar 

  11. Weigert A, Hoppe B (2019) Nephrolithiasis und Nephrokalzinose im Kindesalter. Monatsschr Kinderheilkd 167(6):500–511. https://doi.org/10.1007/s00112-019-0668-6

    Article  Google Scholar 

  12. Ghazali S, Barratt TM (1974) Urinary excretion of calcium and magnesium in children. Arch Dis Child 49(2):97–101. https://doi.org/10.1136/adc.49.2.97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. de Santo NG et al (1992) Population based data on urinary excretion of calcium, magnesium, oxalate, phosphate and uric acid in children from Cimitile (southern Italy). Pediatr Nephrol 6(2):149–157. https://doi.org/10.1007/BF00866297

    Article  PubMed  Google Scholar 

  14. Guillén M, Corella D, Cabello ML, García AM, Hernández-Yago J (1999) Reference values of urinary excretion of cystine and dibasic aminoacids: classification of patients with cystinuria in the Valencian Community, Spain. Clin Biochem 32(1):25–30. https://doi.org/10.1016/s0009-9120(98)00087-3

    Article  PubMed  Google Scholar 

  15. Matos V, Melle GV, Markert M, Guignard JP (1996) Urinary excretion of calcium, magnesium, phosphates, oxalates and urates in normal children in Switzerland. Rev Med Suisse Romande 116(10):839–843

    PubMed  CAS  Google Scholar 

  16. Leumann EP, Dietl A, Matasovic A (1990) Urinary oxalate and glycolate excretion in healthy infants and children. Pediatr Nephrol 4(5):493–497. https://doi.org/10.1007/BF00869828

    Article  PubMed  CAS  Google Scholar 

  17. Reusz GS, Dobos M, Byrd D, Sallay P, Miltényi M, Tulassay T (1995) Urinary calcium and oxalate excretion in children. Pediatr Nephrol 9(1):39–44. https://doi.org/10.1007/BF00858966

    Article  PubMed  CAS  Google Scholar 

  18. Morgenstern BZ et al (1993) Urinary oxalate and glycolate excretion patterns in the first year of life: a longitudinal study. J Pediatr 123(2):248–251. https://doi.org/10.1016/s0022-3476(05)81696-8

    Article  PubMed  CAS  Google Scholar 

  19. Barratt TM, Kasidas GP, Murdoch I, Rose GA (1991) Urinary oxalate and glycolate excretion and plasma oxalate concentration. Arch Dis Child 66(4):501–503. https://doi.org/10.1136/adc.66.4.501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Manz F, Kehrt R, Lausen B, Merkel A (1999) Urinary calcium excretion in healthy children and adolescents. Pediatr Nephrol 13(9):894–899. https://doi.org/10.1007/s004670050723

    Article  PubMed  CAS  Google Scholar 

  21. Hoppe B et al (1997) Influence of nutrition on urinary oxalate and calcium in preterm and term infants. Pediatr Nephrol 11(6):687–690. https://doi.org/10.1007/s004670050366

    Article  PubMed  CAS  Google Scholar 

  22. Hoppe B, Jahnen A, Bach D, Hesse A (1997) Urinary calcium oxalate saturation in healthy infants and children. J Urol 158(2):557–559

    Article  CAS  Google Scholar 

  23. Cogal AG et al (2021) Comprehensive genetic analysis reveals complexity of monogenic urinary stone disease. Kidney Int Rep 6(11):2862–2884. https://doi.org/10.1016/j.ekir.2021.08.033

    Article  PubMed  PubMed Central  Google Scholar 

  24. Habbig S, Beck BB, Hoppe B (2011) Nephrocalcinosis and urolithiasis in children. Kidney Int 80(12):1278–1291. https://doi.org/10.1038/ki.2011.336

    Article  PubMed  Google Scholar 

  25. Schlingmann KP et al (2016) Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol 27(2):604–614. https://doi.org/10.1681/ASN.2014101025

    Article  PubMed  CAS  Google Scholar 

  26. Woodard LE et al (2019) Metabolic consequences of cystinuria. BMC Nephrol 20(1):227. https://doi.org/10.1186/s12882-019-1417-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Anders H‑J et al (2018) The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1-mediated tissue injury. Kidney Int 93(3):656–669. https://doi.org/10.1016/j.kint.2017.09.022

    Article  PubMed  CAS  Google Scholar 

  28. Glew RH et al (2014) Nephropathy in dietary hyperoxaluria: a potentially preventable acute or chronic kidney disease. World J Nephrol 3(4):122–142. https://doi.org/10.5527/wjn.v3.i4.122

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hueppelshaeuser R et al (2012) Enteric hyperoxaluria, recurrent urolithiasis, and systemic oxalosis in patients with Crohn’s disease. Pediatr Nephrol 27(7):1103–1109. https://doi.org/10.1007/s00467-012-2126-8

    Article  PubMed  Google Scholar 

  30. Sighinolfi MC et al (2019) Drug-induced urolithiasis in pediatric patients. Pediatr Drugs 21(5):323–344. https://doi.org/10.1007/s40272-019-00355-5

    Article  Google Scholar 

  31. Karoli R et al (2021) Study of association of metabolic syndrome and risk factors of nephrolithiasis. J Assoc Physicians India 69(1):32–35

    PubMed  Google Scholar 

  32. Afshar K, Jafari S, Marks AJ, Eftekhari A, MacNeily AE (2015) Nonsteroidal anti-inflammatory drugs (NSAIDs) and non-opioids for acute renal colic. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006027.pub2

    Article  PubMed  Google Scholar 

  33. Wan EYF et al (2021) Comparative risks of nonsteroidal anti-inflammatory drugs on CKD. Clin J Am Soc Nephrol 16(6):898–907. https://doi.org/10.2215/CJN.18501120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bundesärztekammer (2011) Aus der UAW-Datenbank “Agranulozytose nach Metamizol – sehr selten, aber häufiger als gedacht”. Dtsch Arztebl 108(33):1758–1759

    Google Scholar 

  35. Velázquez N, Zapata D, Wang H‑HS, Wiener JS, Lipkin ME, Routh JC (2015) Medical expulsive therapy for pediatric urolithiasis: systematic review and meta-analysis. J Pediatr Urol 11(6):321–327. https://doi.org/10.1016/j.jpurol.2015.04.036

    Article  PubMed  PubMed Central  Google Scholar 

  36. Salem HK et al (2014) Slow vs rapid delivery rate shock wave lithotripsy for pediatric renal urolithiasis: a prospective randomized study. J Urol 191(5):1370–1374. https://doi.org/10.1016/j.juro.2013.11.028

    Article  PubMed  Google Scholar 

  37. Al-Abadi E, Hulton S‑A (2013) Extracorporal shock wave lithotripsy in the management of stones in children with oxalosis—still the first choice? Pediatr Nephrol 28(7):1085–1089. https://doi.org/10.1007/s00467-013-2424-9

    Article  PubMed  Google Scholar 

  38. Xue Y‑Q, He D‑L, Chen X‑F, Li X, Zeng J, Wang X‑Y (2009) Shock wave induced kidney injury promotes calcium oxalate deposition. J Urol 182(2):762–765. https://doi.org/10.1016/j.juro.2009.03.080

    Article  PubMed  CAS  Google Scholar 

  39. Hoppe B, Leumann E, von Unruh G, Laube N, Hesse A (2003) Diagnostic and therapeutic approaches in patients with secondary hyperoxaluria. Front Biosci 8:e437–e443

    Article  CAS  Google Scholar 

  40. Weigert A, Hoppe B (2018) Nephrolithiasis and nephrocalcinosis in childhood-risk factor-related current and future treatment options. Front Pediatr 6:98. https://doi.org/10.3389/fped.2018.00098

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bergsland KJ, Worcester EM, Coe FL (2013) Role of proximal tubule in the hypocalciuric response to thiazide of patients with idiopathic hypercalciuria. Am J Physiol Renal Physiol 305(4):F592–F599. https://doi.org/10.1152/ajprenal.00116.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schmutz J‑L (2018) L’hydrochlorothiazide augmenterait le risque de mélanome. Ann Dermatol Venereol 145(10):643–644. https://doi.org/10.1016/j.annder.2018.07.007

    Article  PubMed  Google Scholar 

  43. Hoyer-Kuhn H et al (2014) Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin J Am Soc Nephrol 9(3):468–477. https://doi.org/10.2215/CJN.06820613

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hoppe B (2012) An update on primary hyperoxaluria. Nat Rev Nephrol 8(8):467–475. https://doi.org/10.1038/nrneph.2012.113

    Article  PubMed  CAS  Google Scholar 

  45. Hoppe B et al (1996) Oxalate elimination via hemodialysis or peritoneal dialysis in children with chronic renal failure. Pediatr Nephrol 10(4):488–492

    Article  CAS  Google Scholar 

  46. Illies F, Bonzel K‑E, Wingen A‑M, Latta K, Hoyer PF (2006) Clearance and removal of oxalate in children on intensified dialysis for primary hyperoxaluria type 1. Kidney Int 70(9):1642–1648. https://doi.org/10.1038/sj.ki.5001806

    Article  PubMed  CAS  Google Scholar 

  47. Metry EL et al (2021) Transplantation outcomes in patients with primary hyperoxaluria: a systematic review. Pediatr Nephrol 36(8):2217–2226. https://doi.org/10.1007/s00467-021-05043-6

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kemper MJ (2005) The role of preemptive liver transplantation in primary hyperoxaluria type 1. Urol Res 33(5):376–379. https://doi.org/10.1007/s00240-005-0495-1

    Article  PubMed  Google Scholar 

  49. Dhondup T, Lorenz EC, Milliner DS, Lieske JC (2018) Combined liver-kidney transplantation for primary hyperoxaluria type 2: a case report. Am J Transplant 18(1):253–257. https://doi.org/10.1111/ajt.14418

    Article  PubMed  CAS  Google Scholar 

  50. del Bello A, Cointault O, Delas A, Kamar N (2020) Primary hyperoxaluria type 2 successfully treated with combined liver-kidney transplantation after failure of isolated kidney transplantation. Am J Transplant 20(6):1752–1753. https://doi.org/10.1111/ajt.15829

    Article  PubMed  CAS  Google Scholar 

  51. Méaux M‑N, Sellier-Leclerc A‑L, Acquaviva-Bourdain C, Harambat J, Allard L, Bacchetta J (2022) The effect of lumasiran therapy for primary hyperoxaluria type 1 in small infants. Pediatr Nephrol. https://doi.org/10.1007/s00467-021-05393-1

    Article  PubMed  Google Scholar 

  52. Joher N et al (2022) Early post-transplant recurrence of oxalate nephropathy in a patient with primary hyperoxaluria type 1, despite pretransplant lumasiran therapy. Kidney Int 101(1):185–186. https://doi.org/10.1016/j.kint.2021.10.022

    Article  PubMed  Google Scholar 

  53. Stone HK, VandenHeuvel K, Bondoc A, Flores FX, Hooper DK, Varnell CD (2021) Primary hyperoxaluria diagnosed after kidney transplant: a review of the literature and case report of aggressive renal replacement therapy and lumasiran to prevent allograft loss. Am J Transplant 21(12):4061–4067. https://doi.org/10.1111/ajt.16762

    Article  PubMed  Google Scholar 

  54. Ma Q, Fang L, Su R, Ma L, Xie G, Cheng Y (2018) Uric acid stones, clinical manifestations and therapeutic considerations. Postgrad Med J 94(1114):458–462. https://doi.org/10.1136/postgradmedj-2017-135332

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Hoppe.

Ethics declarations

Interessenkonflikt

B. Hoppe war bis Mai 2022 Angestellter der Firma Dicnerna/Novo Nordisk, Dänemark, C. Martin-Higueras ist deren Berater. N. Younsi und R. Stein geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoppe, B., Martin-Higueras, C., Younsi, N. et al. Nephrolithiasis und Nephrokalzinose bei Kindern und Jugendlichen. Urologie 61, 1099–1109 (2022). https://doi.org/10.1007/s00120-022-01888-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-022-01888-3

Schlüsselwörter

Keywords

Navigation