Skip to main content
Log in

„Transforming growth factor β“ im Prostatakarzinom

Zelluläre Wirkungen und molekulare Grundlagen

Transforming growth factor β in prostate cancer

Cellular effects and basic molecular mechanisms

  • Übersichten
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Der pleiotrope Wachstumsfaktor „transforming growth factor β“ (TGF-β) ist in diverse Signalwege involviert und kann eine Vielzahl von Zellantworten beeinflussen. Bei Entstehung und Karzinogenese des Prostatakarzinoms (PCa) können dies sowohl antionkogene Mechanismen (Wachstumshemmung, Apoptose) als auch proonkogene Prozesse sein (Proliferation, Zellbeweglichkeit, Modulierung der Tumorumgebung). Die ursprünglich antiproliferative Wirkung von TGF-β wird dabei im Verlauf der Tumorprogression immer mehr von proonkogenen Effekten überlagert, die häufig durch die Interaktion mit proliferativen Signalkaskaden wie „Mitogen-activated protein-kinase-“ (MAP-Kinase-) oder Androgenrezeptor- (AR-)Signalwegen vermittelt werden. Obgleich TGF-β ein wichtiger Modulator der PCa-Progression ist, sind die zugrundeliegenden molekular-pathologischen Prozesse bisher nur unvollständig verstanden.

Abstract

The multifunctional cytokine transforming growth factor β (TGFβ) plays a dual role in prostate cancer (PCa), cell growth and tumorigenesis, reflected by its opposing properties of anti-oncogenic (e.g. growth inhibition and apoptosis) and pro-oncogenic effects (e.g. proliferation, cell motility and remodelling of the microenvironment). In the later stages of PCa, TGFβ loses anti-proliferative and thereby tumor-suppressive functions and shifts to a tumorigenic phenotype, mainly initiated by cross-talk between TGFβ signalling and other proliferation signal transduction pathways, such as mitogen-activated protein kinase (MAPK) and androgen receptor (AR) signalling. Although TGFβ plays an important role in tumor progression little is known about the underlying effects of TGFβ in the molecular pathology of PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Abbreviations

PCa:

Prostatakarzinom

TGF-β:

„Transforming growth factor“ β

BMP:

„Bone morphogenetic protein“

LAP:

„Latency associated protein“

LTBP:

„Latent TGF-β binding protein“

TβRI/II/III:

TGF-β-Rezeptor Typ I/II/III

Smad:

Homolog der Proteine SMA und MAD

EZM:

Extrazelluläre Matrix

EMT:

Epithelial-zu-mesenchymal-Transition

PKA:

Proteinkinase A

MAPK:

„Mitogen-activated protein kinase“

MEK MAPK:

„MAP Kinases Kinases Kinase“

MEKK MEK:

MAP Kinases Kinases Kinases Kinase“

Literatur

  1. Ahamed J, Burg N, Yoshinaga K et al (2008) In vitro and in vivo evidence for shear-induced activation of latent transforming growth factor-β1. Blood 112:3650–3660

    Article  PubMed  CAS  Google Scholar 

  2. Ajiboye S, Sissung TM, Sharifi N et al (2010) More than an accessory: implications of type III transforming growth factor-β receptor loss in prostate cancer. BJU Int 105:913–916

    Article  PubMed  CAS  Google Scholar 

  3. Arjaans M, Oude Munnink TH, Timmer-Bosscha H et al (2012) Transforming growth factor (TGF)-β expression and activation mechanisms as potential targets for anti-tumor therapy and tumor imaging. Pharmacol Ther 135:123–132

    Article  PubMed  CAS  Google Scholar 

  4. Bruckheimer EM, Kyprianou N (2001) Dihydrotestosterone enhances transforming growth factor-β-induced apoptosis in hormone-sensitive prostate cancer cells. Endocrinol 142:2419–2426

    Article  CAS  Google Scholar 

  5. Danielpour D (2005) Functions and regulation of transforming growth factor-beta (TGF-β) in the prostate. Eur J Cancer 41:846–857

    Article  PubMed  CAS  Google Scholar 

  6. Di K, Ling MT, Tsao SW et al (2006) Id-1 modulates senescence and TGF-β1 sensitivity in prostate epithelial cells. Biol Cell 98:523–533

    Article  PubMed  CAS  Google Scholar 

  7. Di K, Wong YC, Wang X (2007) Id-1 promotes TGF-beta1-induced cell motility through HSP27 activation and disassembly of adherens junction in prostate epithelial cells. Exp Cell Res 313:3983–3999

    Article  PubMed  CAS  Google Scholar 

  8. Diener KR, Need NF, Buchanan G et al (2010) TGF-beta signalling and immunity in prostate tumourigenesis. Expert Opin Ther Targets 14:179–192

    Article  PubMed  CAS  Google Scholar 

  9. Edlund S, Bu S, Schuster N et al (2003) Transforming growth factor-β1 (TGF-β)-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-β-activated kinase 1 and mitogen-activated protein kinase kinase 3. Mol Biol Cell 14:529–544

    Article  PubMed  CAS  Google Scholar 

  10. Festuccia C, Bologna M, Gravina GL et al (1999) Osteoblast conditioned media contain TGF-beta1 and modulate the migration of prostate tumor cells and their interactions with extracellular matrix components. Int J Cancer 81:395–403

    Article  PubMed  CAS  Google Scholar 

  11. Huang X, Chen S, Xu L et al (2005) Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Res 65:3470–3478

    PubMed  CAS  Google Scholar 

  12. Joffroy CM, Buck MB, Stope MB et al (2010) Antiestrogens induce transforming growth factor β-mediated immunosuppression in breast cancer. Cancer Res 70:1314–1322

    Article  PubMed  CAS  Google Scholar 

  13. Kang HY, Huang KE, Chang SY et al (2002) Differential modulation of androgen receptor-mediated transactivation by Smad3 and tumor suppressor Smad4. J Biol Chem 277:43749–43756

    Article  PubMed  CAS  Google Scholar 

  14. Konrad L, Schreiber JA, Schwarz L et al (2009) TGF-β1 and TGF-β2 strongly enhance the secretion of plasminogen activator inhibitor-1 and matrix metalloproteinase-9 of the human prostate cancer cell line PC-3. Regul Pept 155:28–32

    Article  PubMed  CAS  Google Scholar 

  15. Lamm MLG, Long DD, Goodwin SM et al (1997) Transforming growth factor-β1 inhibits membrane association of protein kinase Cα in a human prostate cancer cell line, PC3. Endocrinol 138:4657–4664

    Article  CAS  Google Scholar 

  16. Le Brun G, Aubin P, Soliman H et al (1998) Upregulation of endothelin 1 and its precursor by IL-1β, TNF-α, and TGF-β in the PC3 human prostate cancer cell line. Cytokine 11:157–162

    Google Scholar 

  17. Lecanda J, Parekh TV, Gama P et al (2007) Transforming growth factor-β, estrogen, and progesterone converge on the regulation of p27Kip1 in the normal and malignant endometrium. Cancer Res 67:1007–1018

    Article  PubMed  CAS  Google Scholar 

  18. Li X, Placencio V, Iturregui JM et al (2008) Prostate tumor progression is mediated by a paracrine TGF-β/Wnt3a signaling axis. Oncogene 27:7118–7130

    Article  PubMed  CAS  Google Scholar 

  19. Lu S, Dong Z. (2006) Characterization of TGF-β-regulated interleukin-8 expression in human prostate cancer cells. Prostate 66:996–1004

    Article  PubMed  CAS  Google Scholar 

  20. Massague J, Seoane J, Wotton D. (2005) Smad transcription factors. Genes Dev 19:2783–2810

    Article  PubMed  CAS  Google Scholar 

  21. Noda D, Itoh S, Watanabe Y et al (2006) ELAC2, a putative prostate cancer susceptibility gene product, potentiates TGF-β/Smad-induced growth arrest of prostate cells. Oncogene 25:5591–5500

    Article  PubMed  CAS  Google Scholar 

  22. Park B-J, Park J-I, Byun D-S et al (2000) Mitogenic conversion of transforming growth factor-β1 effect by oncogenic Ha-Ras-induced activation of the mitogen-activated protein kinase signaling pathway in human prostate cancer. Cancer Res 60:3031–3038

    PubMed  CAS  Google Scholar 

  23. Park J-I, Lee M-G, Cho K et al (2003) Transforming growth factor-β1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. Oncogene 22:4314–4332

    Article  PubMed  CAS  Google Scholar 

  24. Perry KT, Anthony CT, Steiner MS (1997) Immunohistochemical localization of TGF β1, TGF β 2, and TGF β 3 in normal and malignant human prostate. Prostate 33:133–140

    Article  PubMed  CAS  Google Scholar 

  25. Reis ST, Pontes-Junior J, Antunes AA et al (2011) Tgf- β 1 expression as a biomarker of poor prognosis in prostate cancer. Clinics 66:1143–1147

    PubMed  Google Scholar 

  26. Sakko AJ, Ricciardelli C, Mayne K et al (2001) Versican accumulation in human prostatic fibroblast cultures is enhanced by prostate cancer cell-derived transforming growth factor beta1. Cancer Res 61:926–930

    PubMed  CAS  Google Scholar 

  27. Sehgal I, Thompson TC (1999) Novel regulation of type IV collagenase (matrix metalloproteinase-9 and −2) activities by transforming growth factor- β1 in human prostate cancer cell lines. Mol Biol Cell 10:407–416

    PubMed  CAS  Google Scholar 

  28. Sintich SM, Lamm MLG, Sensibar JA et al (1999) Transforming growth factor-β1-induced proliferation of the prostate cancer cell line, TSU-Pr1: The role of platelet-derived growth factor. Endocrinol 140:3411–3415

    Article  CAS  Google Scholar 

  29. Steiner MS, Wand GS, Barrack ER (1994) Effects of transforming growth factor β1 on the adenylyl cyclase-cAMP pathway in prostate cancer. Growth Factors 11:283–290

    Article  PubMed  CAS  Google Scholar 

  30. Stope MB, Popp SL, Knabbe C et al (2010) Estrogen receptor alpha attenuates transforming growth factor-β signaling in breast cancer cells independent from agonistic and antagonistic ligands. Breast Cancer Res Treat 120:357–367

    Article  PubMed  CAS  Google Scholar 

  31. Stope MB, Schubert T, Staar D et al (2012) Effect of the heat shock protein HSP27 on androgen receptor expression and function in prostate cancer cells. World J Urol 30:327–331

    Article  PubMed  CAS  Google Scholar 

  32. Unlü A, Leake RE (2003) Transforming growth factor β1 stimulates urokinase plasminogen activator system on prostate cancer cells. Int J Biol Markers 18:147–151

    PubMed  Google Scholar 

  33. Weydert CJ, Esser AK, Mejia RA et al (2009) Endothelin-1 inhibits prostate cancer growth in vivo through vasoconstriction of tumor-feeding arterioles. Cancer Biol Ther 8:720–729

    Article  PubMed  CAS  Google Scholar 

  34. Xu L, Chen S, Bergan RC (2006) MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene 25:2987–2998

    Article  PubMed  CAS  Google Scholar 

  35. Yang F, Strand DW, Rowley DR (2008) Fibroblast growth factor-2 mediates transforming growth factor-β action in prostate cancer reactive stroma. Oncogene 27:450–459

    Article  PubMed  CAS  Google Scholar 

  36. Zhu B, Fukada K, Zhu H et al (2006) Prohibitin and cofilin are intracellular effectors of transforming growth factor β signaling in human prostate cancer cells. Cancer Res 66:8640–8647

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.B. Stope.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stope, M., Rönnau, C., Schubert, T. et al. „Transforming growth factor β“ im Prostatakarzinom. Urologe 52, 378–383 (2013). https://doi.org/10.1007/s00120-012-3049-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-012-3049-5

Schlüsselwörter

Keywords

Navigation