Skip to main content

Advertisement

Log in

Estrogen receptor α attenuates transforming growth factor-β signaling in breast cancer cells independent from agonistic and antagonistic ligands

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

To investigate a presumed crosstalk between estrogen receptor α (ERα) and the TGF-β signaling pathway in breast cancer, we analyzed the TGF-β-induced expression of the plasminogen activator inhibitor 1 (PAI-1) gene in ER-positive MCF-7 cells. After siRNA-mediated knock-down of endogenous ERα, the transcription level of PAI-1 was upregulated, pointing to an attenuation of TGF-β signaling by the presence of ERα. We verified these findings by a vice versa approach using a primary ER-negative cell model transiently overexpressing either ERα or ERβ. We found that ERα, but not ERβ, led to a strong inhibition of the TGF-β1 signal, monitored by TGF-β reporter assays. This attenuation was completely independent of receptor stimulation by β-estradiol (E2) or inhibition by the pure antagonist ICI 182.780 (ICI). Our results indicate a permanent repression of PAI-1 by ERα and suggest a ligand-independent crosstalk between ERα and TGF-β signaling in breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harris L, Fritsche H, Mennel R et al (2007) American society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312. doi:10.1200/JCO.2007.14.2364

    Article  CAS  PubMed  Google Scholar 

  2. Knight WA, Livingston RB, Gregory EJ et al (1977) Estrogen receptor as an independent prognostic factor for early recurrence in breast cancer. Cancer Res 37:4669–4671

    CAS  PubMed  Google Scholar 

  3. Matthews J, Gustafsson J-A (2003) Estrogen signaling: a subtle balance between ERα and ERβ. Mol Interv 3:281–292. doi:10.1124/mi.3.5.281

    Article  CAS  PubMed  Google Scholar 

  4. Nilsson S, Mäkelä S, Treuter E et al (2001) Mechansim of estrogen action. Physiol Rev 81:1535–1565

    CAS  PubMed  Google Scholar 

  5. Hawse JR, Subramaniam M, Ingle JN et al (2008) Estrogen-TGFβ cross-talk in bone and other cell types: role of TIEG, Runx2, and other transcription factors. J Cell Biochem 106:383–392. doi:10.1002/jcb.21425

    Article  CAS  Google Scholar 

  6. Knabbe C, Lippman ME, Wakefield LM et al (1987) Evidence that transforming growth factor-β is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48:417–428. doi:10.1016/0092-8674(87)90193-0

    Article  CAS  PubMed  Google Scholar 

  7. Roberts AB, Wakefield LM (2003) The two faces of transforming growth factor β in carcinogenesis. Proc Natl Acad Sci USA 100:8621–8623. doi:10.1073/pnas.1633291100

    Article  CAS  PubMed  Google Scholar 

  8. Kaminska B, Wesolowska A, Danilkiewicz M (2005) TGF beta signalling and its role in tumor pathogenesis. Acta Biochim Pol 52:329–337

    CAS  PubMed  Google Scholar 

  9. Westerhausen DR, Hopkins WE, Billadello JJ (1991) Multiple transforming growth factor-β-inducible elements regulate expression of the plaminogen activator inhibitor type-1 gene in Hep G2 cells. J Biol Chem 266:1092–1100

    CAS  PubMed  Google Scholar 

  10. Dickson RB, Kasid A, Huff KK et al (1987) Activation of growth factor secretion in tumorigenic states of breast cancer induced by 17β-estradiol or v-Ha-ras oncogene. Proc Natl Acad Sci USA 84:837–841. doi:10.1073/pnas.84.3.837

    Article  CAS  PubMed  Google Scholar 

  11. Buck MB, von der Fecht J, Knabbe C (2002) Antiestrogenic regulation of transforming growth factor beta receptor I and II in human breast cancer cells. Ann N Y Acad Sci 963:140–143

    Article  CAS  PubMed  Google Scholar 

  12. Brandt S, Kopp A, Grage B et al (2003) Effects of tamoxifen on transcriptional level of transforming growth factor beta (TGF-beta) isoforms 1 and 2 in tumor tissue during primary treatment of patients with breast cancer. Anticancer Res 23:223–229

    CAS  PubMed  Google Scholar 

  13. Buck MB, Pfizenmaier K, Knabbe C (2004) Antiestrogens induce growth inhibition by sequential activation of p38 mitogen-activated protein kinase and transforming growth factor-β pathway in human breast cancer. Mol Endocrinol 18:1643–1657. doi:10.1210/me.2003-0278

    Article  CAS  PubMed  Google Scholar 

  14. Buck MB, Fritz P, Dippon J et al (2004) Prognostic significance of transforming growth factor β receptor II in estrogene receptor-negative breast cancer patients. Clin Cancer Res 10:491–498. doi:10.1158/1078-0432.CCR-0320-03

    Article  CAS  PubMed  Google Scholar 

  15. Rae JM, Creighton CJ, Meck JM et al (2007) MDA-MB-435 cells are derived from M14 melanoma cells—a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104:13–19. doi:10.1007/s10549-006-9392-8

    Article  PubMed  Google Scholar 

  16. Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS (1986) Phenol red in tissue cultur media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci USA 83:2496–2500. doi:10.1073/pnas.83.8.2496

    Article  CAS  PubMed  Google Scholar 

  17. Wrana JL, Attisano L, Carcamo J et al (1992) TGFβ signals through a heteromeric protein kinase complex. Cell 71:1003–1014. doi:10.1016/0092-8674(92)90395-S

    Article  CAS  PubMed  Google Scholar 

  18. Dai JL, Turnacioglu KK, Schutte M et al (1998) Dpc4 transcriptional activation and dysfunction in cancer cells. Cancer Res 58:4592–4597

    CAS  PubMed  Google Scholar 

  19. Andersson S, Davis DL, Dahlbäck H et al (1989) Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J Biol Chem 264:8222–8229

    CAS  PubMed  Google Scholar 

  20. Lai C-F, Feng X, Nishimura R et al (2000) Transforming growth factor-β up-regulates the β5 integrin subunit expression via Sp1 and Smad signaling. J Biol Chem 275:36400–36406. doi:10.1074/jbc.M002131200

    Article  CAS  PubMed  Google Scholar 

  21. Edwards DR, Murphy G, Reynolds JJ et al (1987) Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibtor. EMBO J 6:1899–1904

    CAS  PubMed  Google Scholar 

  22. Massague J, Wotton D (2000) Transcriptional control by the TGF-β/Smad signaling system. EMBO J 19:1745–1754. doi:10.1093/emboj/19.8.1745

    Article  CAS  PubMed  Google Scholar 

  23. Hall M-C, Young DA, Waters JG et al (2003) The comparative role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth factor-β1. J Biol Chem 278:10304–10313. doi:10.1074/jbc.M212334200

    Article  CAS  PubMed  Google Scholar 

  24. Revillion F, Pawlowski V, Hornez L et al (2000) Glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer. Eur J Cancer 36:1038–1042. doi:10.1016/S0959-8049(00)00051-4

    Article  CAS  PubMed  Google Scholar 

  25. Van der Burg B, Van Selm-Miltenburg AJ, Laat SWD et al (1989) Direct effects of estrogen on c-fos and c-myc protooncogene expression and cellular proliferation in human breast cancer cells. Mol Cell Endocrinol 64:223–228. doi:10.1016/0303-7207(89)90149-4

    Article  PubMed  Google Scholar 

  26. Müller V, Jensen EV, Knabbe C (1998) Partial antagonism between steroidal and nonsteroidal antiestrogens in human breast cancer cell lines. Cancer Res 58:263–267

    PubMed  Google Scholar 

  27. Wakeling AE, Dukes M, Bowler J (1991) A potent specific pure antiestrogen with clinical potential. Cancer Res 51:3867–3873

    CAS  PubMed  Google Scholar 

  28. Brünner N, Frandsen TL, Holst-Hansen C et al (1993) MCF7/LCC2: a 4-hydroxytamoxifen resistant human breast cancer variant that retains sensitivity to the steroidal antoestrogen ICI 182;780. Cancer Res 53:3229–3232

    PubMed  Google Scholar 

  29. Burdette JE, Woodruff TK (2007) Activin and estrogen crosstalk regulates transcription in human breast cancer cells. Endocr Relat Cancer 14:679–689. doi:10.1677/ERC-07-0054

    Article  CAS  PubMed  Google Scholar 

  30. Qi X, Borowicz S, Pramanik R et al (2004) Estrogen receptor inhibits c-jun-dependent stress-induced cell death by binding and modifying c-jun activity in human breast cancer cells. J Biol Chem 279:6769–6777. doi:10.1074/jbc.M311492200

    Article  CAS  PubMed  Google Scholar 

  31. Teyssier C, Belguise K, Galtier F et al (2001) Characterization of the physical interaction between estrogen receptor α and JUN proteins. J Biol Chem 276:36361–36369. doi:10.1074/jbc.M101806200

    Article  CAS  PubMed  Google Scholar 

  32. Matsuda T, Yamamoto T, Muraguchi A et al (2001) Cross-talk between transforming growth factor-β and estrogen receptor signaling through Smad3. J Biol Chem 276:42908–42914. doi:10.1074/jbc.M105316200

    Article  CAS  PubMed  Google Scholar 

  33. Wu L, Wu Y, Gathings B et al (2003) Smad4 as a transcription corepressor for estrogen receptor α. J Biol Chem 278:15192–15200. doi:10.1074/jbc.M212332200

    Article  CAS  PubMed  Google Scholar 

  34. Green KA, Carroll JS (2007) Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Natl Rev 7:713–722

    CAS  Google Scholar 

  35. Foekens JA, Schmitt M, van Putten WL et al (1994) Plasminogen activator inhibitor-1 and prognosis on primary breast cancer. J Clin Oncol 12:1648–1658

    CAS  PubMed  Google Scholar 

  36. Tian F, Byfield SD, Parks WT et al (2003) Reduction in Smad2/3 signaling enhances tumorigenesis but supresses metastasis of breast cancer cell lines. Cancer Res 63:8284–8292

    CAS  PubMed  Google Scholar 

  37. Jänicke F, Schmitt M, Pache L et al (1993) Urokinase (uPA) and its inhibitor PAI-1 are strong and independent prognostic factors in node-negative breast cancer. Breast Cancer Res Treat 24:195–208. doi:10.1007/BF01833260

    Article  PubMed  Google Scholar 

  38. Roberts AB, Tian F, Byfield SD et al (2006) Smad3 is key to TGF-β-mediated epithelial-to-mesenchymal transition, fibrosis, tumor supression and metastasis. Cytokine Growth Factor Rev 17:19–27. doi:10.1016/j.cytogfr.2005.09.008

    Article  CAS  PubMed  Google Scholar 

  39. Bover L, Barrio M, Bravo AI et al (1998) The human breast cancer cell line IIB-BR-G has amplified c-myc and c-fos oncogenes in vitro and is spontaneously metastatic in vivo. Cell Mol Biol (Noisy-le-grand) 44:493–504

    CAS  Google Scholar 

  40. Rich MA, Furmanski P, Brooks SC (1978) Prognostic value of estrogen receptor determinations in patients with breast cancer. Cancer Res 38:4296–4298

    CAS  PubMed  Google Scholar 

  41. Foekens JA, Look MP, Peters HA et al (1995) Urokinase-type plasminogen activator and its inhibitor PAI-1: predictors of poor response to tamoxifen therapy in recurrent breast cancer. J Natl Cancer Inst 87:751–756. doi:10.1093/jnci/87.10.751

    Article  CAS  PubMed  Google Scholar 

  42. Han B, Nakamura M, Mori I et al (2005) Urokinase-type plasminogen activator system and breast cancer. Oncol Rep 14:105–112 review

    CAS  PubMed  Google Scholar 

  43. Harrell JC, Dye WW, Allred DC et al (2006) Estrogen receptor positive breast cancer metastasis: altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Res 66:9308–9315. doi:10.1158/0008-5472.CAN-06-1769

    Article  CAS  PubMed  Google Scholar 

  44. Odekon LE, Blasi F, Rifkin DB (1994) Requirement for receptor-bound urokinase in plasmin-dependent cellular conversion of latent TGF-β to TGF-β. J Cell Physiol 158:398–407. doi:10.1002/jcp.1041580303

    Article  CAS  PubMed  Google Scholar 

  45. Delany AM, Canalis E (2001) The metastasis-associated metalloproteinase stromelysin-3 is induced by transforming growth factor-β in osteoblasts and fibroblasts. Endocrinology 142:1561–1566. doi:10.1210/en.142.4.1561

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Robert Bosch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius Knabbe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stope, M.B., Popp, S.L., Knabbe, C. et al. Estrogen receptor α attenuates transforming growth factor-β signaling in breast cancer cells independent from agonistic and antagonistic ligands. Breast Cancer Res Treat 120, 357–367 (2010). https://doi.org/10.1007/s10549-009-0393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0393-2

Keywords

Navigation