Skip to main content
Log in

Wie funktioniert Radiomics?

A primer on radiomics

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Klinisches Problem

Die reproduzierbare und umfassende Extraktion von Informationen aus radiologischen Bildern ist eine Kernaufgabe der Radiologie. Dynamische Entwicklungen im Bereich der künstlichen Intelligenz (KI) und des maschinellen Lernens stellen hierzu Methoden bereit. Radiomics ist eine solche Methode und bietet neue Möglichkeiten und Herausforderungen für die Zukunft der Radiologie.

Methodische Innovationen

Radiomics beschreibt die quantitative Auswertung, Interpretation und klinische Einordnung von bildmorphologischen Merkmalen in radiologischen Daten. Komponenten einer Radiomics-Analyse sind Datenakquisition, Datenvorverarbeitung, Datenmanagement, Segmentierung von relevanten Bildregionen, die Berechnung und Auswahl von quantitativen Bildmerkmalen sowie die Erstellung eines Radiomics-Modells, das diagnostisch und prognostisch genutzt werden kann. Diese Übersichtsarbeit erläutert diese Komponenten und soll einen zugänglichen Einstieg in das Forschungsfeld Radiomics bieten sowie bestehende Limitationen aufzeigen.

Material und Methoden

Diese Arbeit basiert auf einer selektiven Literaturrecherche mit der Suchmaschine PubMed.

Bewertung

Auch wenn Radiomics-Anwendungen bisher noch nicht im klinischen Alltag angekommen sind, wird die Quantifizierung radiologischer Daten durch Radiomics-Verfahren zukünftig weiter zunehmen. Dies birgt das Potenzial, die Fachrichtung nachhaltig zu verändern. Durch die erfolgreiche Auswertung aller Informationen, die in radiologischen Bildern enthalten sind, kann der nächste Schritt in Richtung einer personalisierten, zukunftsweisenden Medizin gegangen werden.

Abstract

Clinical issue

The reproducible and exhaustive extraction of information from radiological images is a central task in the practice of radiology. Dynamic developments in the fields of artificial intelligence (AI) and machine learning are introducing new methods for this task. Radiomics is one such method and offers new opportunities and challenges for the future of radiology.

Methodological innovations

Radiomics describes the quantitative evaluation, interpretation, and clinical assessment of imaging markers in radiological data. Components of a radiomics analysis are data acquisition, data preprocessing, data management, segmentation of regions of interest, computation and selection of imaging markers, as well as the development of a radiomics model used for diagnosis and prognosis. This article explains these components and aims at providing an introduction to the field of radiomics while highlighting existing limitations.

Materials and methods

This article is based on a selective literature search with the PubMed search engine.

Assessment

Even though radiomics applications have yet to arrive in routine clinical practice, the quantification of radiological data in terms of radiomics is underway and will increase in the future. This holds the potential for lasting change in the discipline of radiology. Through the successful extraction and interpretation of all the information encoded in radiological images the next step in the direction of a more personalized, future-oriented form of medicine can be taken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Aerts HJWL (2018) Data science in radiology: a path forward. Clin Cancer Res 24:532–534. https://doi.org/10.1158/1078-0432.CCR-17-2804

    Article  PubMed  Google Scholar 

  2. Aerts HJWL, Velazquez ER, Leijenaar RTH et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. https://doi.org/10.1038/ncomms5006

    Article  PubMed  PubMed Central  Google Scholar 

  3. Andreassen CN, Schack LMH, Laursen LV, Alsner J (2016) Radiogenomics—current status, challenges and future directions. Cancer Lett 382:127–136. https://doi.org/10.1016/j.canlet.2016.01.035

    Article  CAS  PubMed  Google Scholar 

  4. Baeßler B, Weiss K, Pinto Dos SD (2019) Robustness and reproducibility of radiomics in magnetic resonance imaging: a phantom study. Invest Radiol 54:221–228. https://doi.org/10.1097/RLI.0000000000000530

    Article  PubMed  Google Scholar 

  5. Bibault J‑E, Giraud P, Housset M et al (2018) Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep 8:12611. https://doi.org/10.1038/s41598-018-30657-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bodalal Z, Trebeschi S, Nguyen-Kim TDL et al (2019) Radiogenomics: bridging imaging and genomics. Abdom Radiol 44:1960–1984. https://doi.org/10.1007/s00261-019-02028-w

    Article  Google Scholar 

  7. Choplin RH, Boehme JM, Maynard CD (1992) Picture archiving and communication systems: an overview. Radiographics 12:127–129. https://doi.org/10.1148/radiographics.12.1.1734458

    Article  CAS  PubMed  Google Scholar 

  8. 3D Slicer. https://www.slicer.org/. Zugegriffen: 30. September 2019

  9. Dyson F (2004) A meeting with Enrico Fermi. Nature 427:297. https://doi.org/10.1038/427297a

    Article  CAS  PubMed  Google Scholar 

  10. Gillies RJ, Kinahan PE, Hricak H (2015) Radiomics: images are more than pictures, they are data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  11. Götz M, Nolden M, Maier-Hein K (2019) MITK Phenotyping: an open-source toolchain for image-based personalized medicine with radiomics. Radiother Oncol 131:108–111. https://doi.org/10.1016/J.RADONC.2018.11.021

    Article  PubMed  Google Scholar 

  12. van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He L, Huang Y, Ma Z et al (2016) Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci Rep. https://doi.org/10.1038/srep34921

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hosny A, Aerts HJ, Mak RH (2019) Handcrafted versus deep learning radiomics for prediction of cancer therapy response. Lancet Digit Health 1:e106–e107. https://doi.org/10.1016/S2589-7500(19)30062-7

    Article  PubMed  Google Scholar 

  15. Hosny A, Parmar C, Coroller TP et al (2018) Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med 15:e1002711. https://doi.org/10.1371/journal.pmed.1002711

    Article  PubMed  PubMed Central  Google Scholar 

  16. ITK-SNAP Home. http://www.itksnap.org/pmwiki/pmwiki.php. Zugegriffen: 30. September 2019

  17. Joint Imaging Platform. https://jip.dktk.dkfz.de/jiphomepage/. Zugegriffen: 30. September 2019

  18. Kleesiek J, Petersen J, Döring M et al (2016) Virtual raters for reproducible and objective assessments in radiology. Sci Rep 6:1–11. https://doi.org/10.1038/srep25007

    Article  CAS  Google Scholar 

  19. Kleesiek J, Murray JM, Strack C, Kaissis G, Braren R (2019) Wie funktioniert maschinelles Lernen? Radiologe. https://doi.org/10.1007/s00117-019-00616-x

    Article  Google Scholar 

  20. Kreit E, Mäthger LM, Hanlon RT et al (2013) Biological versus electronic adaptive coloration: how can one inform the other? J R Soc Interface 10:20120601. https://doi.org/10.1098/rsif.2012.0601

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kumar V, Gu Y, Basu S et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248. https://doi.org/10.1016/j.mri.2012.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446. https://doi.org/10.1016/j.ejca.2011.11.036

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lao J, Chen Y, Li Z‑C et al (2017) A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep. https://doi.org/10.1038/s41598-017-10649-8

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li S, Wang K, Hou Z et al (2018) Use of radiomics combined with machine learning method in the recurrence patterns after intensity-modulated radiotherapy for nasopharyngeal carcinoma: a preliminary study. Front Oncol. https://doi.org/10.3389/fonc.2018.00648

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mackin D, Fave X, Zhang L et al (2015) Measuring CT scanner variability of radiomics features. Invest Radiol 50:757–765. https://doi.org/10.1097/RLI.0000000000000180

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nioche C, Orlhac F, Boughdad S et al (2018) LIFex: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res 78:4786–4789. https://doi.org/10.1158/0008-5472.CAN-18-0125

    Article  CAS  PubMed  Google Scholar 

  27. Owens CA, Peterson CB, Tang C et al (2018) Lung tumor segmentation methods: Impact on the uncertainty of radiomics features for non-small cell lung cancer. PLoS ONE. https://doi.org/10.1371/journal.pone.0205003

    Article  PubMed  PubMed Central  Google Scholar 

  28. Park JE, Park SY, Kim HJ, Kim HS (2019) Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives. Korean J Radiol 20:1124–1137. https://doi.org/10.3348/kjr.2018.0070

    Article  PubMed  PubMed Central  Google Scholar 

  29. Parmar C, Grossmann P, Bussink J et al (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087. https://doi.org/10.1038/srep13087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perrin T, Midya A, Yamashita R et al (2018) Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging. Abdom Radiol N Y 43:3271–3278. https://doi.org/10.1007/s00261-018-1600-6

    Article  Google Scholar 

  31. Rizzo S, Botta F, Raimondi S et al (2018) Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp 2:36. https://doi.org/10.1186/s41747-018-0068-z

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rutman AM, Kuo MD (2009) Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2009.01.050

    Article  PubMed  Google Scholar 

  33. Segal E, Sirlin CB, Ooi C et al (2007) Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 25:675–680. https://doi.org/10.1038/nbt1306

    Article  CAS  PubMed  Google Scholar 

  34. Shafiq-Ul-Hassan M, Zhang GG, Latifi K et al (2017) Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys 44:1050–1062. https://doi.org/10.1002/mp.12123

    Article  CAS  PubMed  Google Scholar 

  35. Sullivan DC, Obuchowski NA, Kessler LG et al (2015) Metrology standards for quantitative imaging biomarkers. Radiology 277:813–825. https://doi.org/10.1148/radiol.2015142202

    Article  PubMed  Google Scholar 

  36. The Medical Imaging Interaction Toolkit (MITK) – mitk.org. http://mitk.org/wiki/MITK. Zugegriffen: 30. September 2019

  37. Xu Y, Hosny A, Zeleznik R et al (2019) Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res 25:3266–3275. https://doi.org/10.1158/1078-0432.CCR-18-2495

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zwanenburg A, Leger S, Vallières M, Löck S (2016) Image biomarker standardisation initiative

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Kleesiek.

Ethics declarations

Interessenkonflikt

J.M. Murray, G. Kaissis, R. Braren und J. Kleesiek geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, J.M., Kaissis, G., Braren, R. et al. Wie funktioniert Radiomics?. Radiologe 60, 32–41 (2020). https://doi.org/10.1007/s00117-019-00617-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-019-00617-w

Schlüsselwörter

Keywords

Navigation