Skip to main content
Log in

Funktionelle Hirnbildgebung

Functional brain imaging

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Methodik

Mittlerweile ist die funktionelle MRT (fMRT) eine Methode, die nicht mehr nur in der neurowissenschaftlichen Routine verwendet wird.

Leistungsfähigkeit

Die fMRT ermöglicht die nichtinvasive Darstellung der Hirnaktivität in guter räumlicher und zeitlicher Auflösung unter Ausnutzung der Durchblutungsänderung aufgrund der erhöhten Nervenzellaktivität. Unter Verwendung leistungsfähiger Hochfeldmagneten können nach ausführlicher Nachverarbeitung der Daten sowie zunehmend validerer statistischer Auswertung Hirnregionen mit erhöhter Nervenzellaktivität sichtbar gemacht und auf strukturellen Bildern als Aktivierungsbilder dargestellt oder auch multimodal kombiniert werden, z. B. mit Diffusion-tensor-imaging(DTI)-Aufnahmen. Damit sind Einblicke in die Gehirnfunktion bei unterschiedlichen Aufgaben sowohl in der Forschung als auch in der klinischen Anwendung möglich. Neben den Grundlagen des Blood-oxygenation-level-dependent(BOLD)-Signals werden in diesem Artikel der Aufbau von fMRT-Untersuchungen, Auswahl der Paradigmen und Auswertungen insbesondere in Hinblick auf die klinische Routine behandelt. Klinische Anwendung findet die fMRT v. a. in der präoperativen Darstellung von Lagebeziehungen von Tumoren zu eloquenten Hirnregionen oder zur Bestimmung der Lateralisation der Sprache.

Bewertung

Da das BOLD-Signal u. a. deutlich von der Magnetfeldstärke abhängig ist und auch andere Einschränkungen bestehen, wird ein Ausblick auf aktuelle Entwicklungen mit zunehmenden Feldstärken wie 7 T sowie Sequenz-, Design- und Auswertungsoptimierung gegeben.

Abstract

Method

Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications.

Performance

Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing.

Practical recommendations

As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Kwong KK et al (1995) EPI imaging of global increase of brain MR signal with breath-hold preceded by breathing O2. Magn Reson Med 33(3):448–452

    Article  CAS  PubMed  Google Scholar 

  2. Bandettini PA et al (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30(2):161–173

    Article  CAS  PubMed  Google Scholar 

  3. Duncan GE, Stumpf WE (1991) Brain activity patterns: assessment by high resolution autoradiographic imaging of radiolabeled 2-deoxyglucose and glucose uptake. Prog Neurobiol 37(4):365–382

    Article  CAS  PubMed  Google Scholar 

  4. Ogawa S et al (2000) An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds. Proc Natl Acad Sci U S A 97(20):11026–11031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Moseley ME, deCrespigny A, Spielman DM (1996) Magnetic resonance imaging of human brain function. Surg Neurol 45(4):385–391

    Article  CAS  PubMed  Google Scholar 

  6. Friston KJ et al (1995) Analysis of fMRI time-series revisited. Neuroimage 2(1):45–53

    Article  CAS  PubMed  Google Scholar 

  7. Friston KJ et al (1999) Multisubject fMRI studies and conjunction analyses. Neuroimage 10(4):385–396

    Article  CAS  PubMed  Google Scholar 

  8. Bennett CM, Miller MB (2010) How reliable are the results from functional magnetic resonance imaging? Ann N Y Acad Sci 1191:133–155

    Article  PubMed  Google Scholar 

  9. Bennett CM, Wolford GL, Miller MB (2009) The principled control of false positives in neuroimaging. Soc Cogn Affect Neurosci 4(4):417–422

    Article  PubMed Central  PubMed  Google Scholar 

  10. Viallon M et al (2015) State-of-the-art MRI techniques in neuroradiology: principles, pitfalls, and clinical applications. Neuroradiology 57(5):441–467

    Article  PubMed  Google Scholar 

  11. Khanna N et al (2015) Functional neuroimaging: fundamental principles and clinical applications. Neuroradiol J 28(2):87–96

    Article  PubMed  Google Scholar 

  12. James JS et al (2015) Analyzing functional, structural, and anatomical correlation of hemispheric language lateralization in healthy subjects using functional MRI, diffusion tensor imaging, and voxel-based morphometry. Neurol India 63(1):49–57

    Article  PubMed  Google Scholar 

  13. Rykhlevskaia E, Gratton G, Fabiani M (2008) Combining structural and functional neuroimaging data for studying brain connectivity: a review. Psychophysiology 45(2):173–187

    Article  PubMed  Google Scholar 

  14. Reis C et al (2015) What’s new in traumatic brain injury: update on tracking, monitoring and treatment. Int J Mol Sci 16(6):11903–11965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bar M et al (2001) Cortical mechanisms specific to explicit visual object recognition. Neuron 29(2):529–535

    Article  CAS  PubMed  Google Scholar 

  16. Crone JS et al (2013) Self-related processing and deactivation of cortical midline regions in disorders of consciousness. Front Hum Neurosci 7:504

    Article  PubMed Central  PubMed  Google Scholar 

  17. Crone JS et al (2011) Deactivation of the default mode network as a marker of impaired consciousness: an fMRI study. PLOS One 6(10):e26373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kujala T, Alho K, Naatanen R (2000) Cross-modal reorganization of human cortical functions. Trends Neurosci 23(3):115–120

    Article  CAS  PubMed  Google Scholar 

  19. Buchel C (1998) Functional neuroimaging studies of Braille reading: cross-modal reorganization and its implications. Brain 121(Pt 7):1193–1194

    Article  PubMed  Google Scholar 

  20. Sadato N et al (2002) Critical period for cross-modal plasticity in blind humans: a functional MRI study. Neuroimage 16(2):389–400

    Article  PubMed  Google Scholar 

  21. Gizewski ER et al (2003) Cross-modal plasticity for sensory and motor activation patterns in blind subjects. Neuroimage 19(3):968–975

    Article  CAS  PubMed  Google Scholar 

  22. Naglatzki RP et al (2012) Cerebral somatic pain modulation during autogenic training in fMRI. Eur J Pain 16(9):1293–1301

    Article  CAS  PubMed  Google Scholar 

  23. Vikingstad EM et al (2000) Cortical language lateralization in right handed normal subjects using functional magnetic resonance imaging. J Neurol Sci 175(1):17–27

    Article  CAS  PubMed  Google Scholar 

  24. Pujol S et al (2015) The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery. J Neuroimaging. doi:10.1111/jon.12283

    PubMed  Google Scholar 

  25. Pfeuffer J et al (2002) Zoomed functional imaging in the human brain at 7 Tesla with simultaneous high spatial and high temporal resolution. Neuroimage 17(1):272–286

    Article  PubMed  Google Scholar 

  26. Gizewski ER et al (2007) fMRI at 7 T: whole-brain coverage and signal advantages even infratentorially? Neuroimage 37(3):761–768

    Article  PubMed  Google Scholar 

  27. Theysohn N et al (2013) Memory-related hippocampal activity can be measured robustly using FMRI at 7 Tesla. J Neuroimaging 23(4):445–451

    Article  PubMed  Google Scholar 

  28. Poser BA et al (2010) Three dimensional echo-planar imaging at 7 Tesla. Neuroimage 51(1):261–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Todd N et al (2015) Evaluation of 2D multiband EPI imaging for high-resolution, whole-brain, task-based fMRI studies at 3 T: Sensitivity and slice leakage artifacts. Neuroimage 124(Part A):32–42

    PubMed  Google Scholar 

  30. Power JD, Schlaggar BL, Petersen SE (2015) Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage 105:536–551

    Article  PubMed  Google Scholar 

  31. Zhang L, Guindani M, Vannucci M (2015) Bayesian models for fMRI data analysis. Wiley Interdiscip Rev Comput Stat 7(1):21–41

    Article  PubMed Central  PubMed  Google Scholar 

  32. Daunizeau J, David O, Stephan KE (2011) Dynamic causal modelling: a critical review of the biophysical and statistical foundations. Neuroimage 58(2):312–322

    Article  CAS  PubMed  Google Scholar 

  33. Marinazzo D et al (2011) Nonlinear connectivity by Granger causality. Neuroimage 58(2):330–338

    Article  PubMed  Google Scholar 

  34. Sala-Llonch R, Bartres-Faz D, Junque C (2015) Reorganization of brain networks in aging: a review of functional connectivity studies. Front Psychol 6:663

    Article  PubMed Central  PubMed  Google Scholar 

  35. Smyser CD, Neil JJ (2015) Use of resting-state functional MRI to study brain development and injury in neonates. Semin Perinatol 39(2):130–140

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Gizewski.

Ethics declarations

Interessenkonflikt

E. R. Gizewski gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Anmerkung. Das Wort „Proband“ bzw. „Patient“ wird jeweils in weiblicher und männlicher Form verstanden und nur aufgrund der besseren Lesbarkeit so verwendet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gizewski, E.R. Funktionelle Hirnbildgebung. Radiologe 56, 148–158 (2016). https://doi.org/10.1007/s00117-015-0072-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-015-0072-8

Schlüsselwörter

Keywords

Navigation