Skip to main content
Log in

Modernes MR-Protokoll für die Leberbildgebung

Modern magnetic resonance imaging of the liver

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die Magnetresonanztomographie (MRT) der Leber ist in der radiologischen Diagnostik fokaler und diffuser Lebererkrankungen fest etabliert und untersteht einem steten Wandel durch den fortwährenden technischen Fortschritt. Durch Neuerungen bei der Hardware, den Sequenzen und der Bildnachverarbeitung konnten in den letzten Jahren deutliche Fortschritte erzielt werden. Insbesondere auf dem Gebiet der Untersuchungssequenzen kam es zu Entwicklungen, die das diagnostische Spektrum der MRT erweiterten, zu einer Verkürzung der Scanzeit führten und zu einer Verbesserung der Bildqualität beitrugen.

Gegenstand dieses Artikels ist es, den technischen Hintergrund und die klinische Anwendung neuerer Sequenztechniken zu erklären und so die Möglichkeiten und den Umfang eines modernen MRT-Untersuchungsprotokolls für die Leber darzustellen.

Abstract

Magnetic resonance imaging (MRI) of the liver has become an essential tool in the radiological diagnostics of both focal and diffuse diseases of the liver and is subject to constant change due to technological progress. Recently, important improvements could be achieved by innovations regarding MR hardware, sequences and postprocessing methods. The diagnostic spectrum of MRI could be broadened particularly due to new examination sequences, while at the same time scanning time could be shortened and image quality has been improved. The aim of this article is to explain both the technological background and the clinical application of recent MR sequence developments and to present the scope of a modern MRI protocol for the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. ACR Committee on Drucs and Contrast Media (2015) ACR Manual on Contrast Media, Verson 10.1. American College of Radiology, Reston

    Google Scholar 

  2. American College of Radiology (ACR) (2015) ACR-SAR-SPR practice parameter for the performance of magnetic resonance imaging (MRI) of the liver. American College of Radiology, Reston

    Google Scholar 

  3. Allkemper T, Sagmeister F, Cicinnati V et al (2014) Evaluation of fibrotic liver disease with whole-liver T1rho MR imaging: a feasibility study at 1.5 T. Radiology 271:408–415

    Article  PubMed  Google Scholar 

  4. Anwar M, Wood J, Manwani D et al (2013) Hepatic iron quantification on 3 Tesla (3 T) Magnetic Resonance (MR): technical challenges and solutions. Radiol Res Pract 2013:628150

    PubMed Central  PubMed  Google Scholar 

  5. Bartolozzi C, Cioni D, Donati F et al (2001) Focal liver lesions: MR imaging-pathologic correlation. Eur Radiol 11:1374–1388

    Article  CAS  PubMed  Google Scholar 

  6. Bayramoglu S, Kilickesmez O, Cimilli T et al (2010) T2-weighted MRI of the upper abdomen: comparison of four fat-suppressed T2-weighted sequences including PROPELLER (BLADE) technique. Acad Radiol 17:368–374

    Article  PubMed  Google Scholar 

  7. Beck GM, De Becker J, Jones AC et al (2008) Contrast-enhanced timing robust acquisition order with a preparation of the longitudinal signal component (CENTRA plus) for 3D contrast-enhanced abdominal imaging. JMRI 27:1461–1467

    Article  PubMed  Google Scholar 

  8. Browning JD, Szczepaniak LS, Dobbins R et al (2004) Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40:1387–1395

    Article  PubMed  Google Scholar 

  9. Cassinotto C, Feldis M, Vergniol J et al (2015) MR relaxometry in chronic liver diseases: Comparison of T1 mapping, T2 mapping, and diffusion-weighted imaging for assessing cirrhosis diagnosis and severity. Eur J Radiol 40(6):1387–1395

    Google Scholar 

  10. Chang Y, Pipe JG, Karis JP et al (2014) The effects of SENSE on PROPELLER imaging. Magn Reson Med. (Epub ahead of print) doi:DOI: 10.1002/mrm.25557

    Google Scholar 

  11. Chavhan GB, Almehdar A, Moineddin R et al (2013) Comparison of respiratory-triggered 3-D fast spin-echo and single-shot fast spin-echo radial slab MR cholangiopancreatography images in children. Pediatr Radiol 43:1086–1092

    Article  PubMed  Google Scholar 

  12. Chow AM, Gao DS, Fan SJ et al (2012) Liver fibrosis: an intravoxel incoherent motion (IVIM) study. JMRI 36:159–167

    Article  PubMed  Google Scholar 

  13. Coenegrachts K, Ghekiere J, Denolin V et al (2010) Perfusion maps of the whole liver based on high temporal and spatial resolution contrast-enhanced MRI (4D THRIVE): feasibility and initial results in focal liver lesions. Eur J Radiol 74:529–535

    Article  PubMed  Google Scholar 

  14. Dietrich P, Hellerbrand C (2014) Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract Res Clin Gastroenterol 28(4):637–653

    Article  CAS  PubMed  Google Scholar 

  15. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194

    Article  CAS  PubMed  Google Scholar 

  16. Eggers H, Bornert P (2014) Chemical shift encoding-based water-fat separation methods. JMRI 40:251–268

    Article  PubMed  Google Scholar 

  17. Eggers H, Brendel B, Duijndam A et al (2011) Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 65:96–107

    Article  PubMed  Google Scholar 

  18. European Society of Urology (ESUR) (2012) ESUR Guidelines on contrast media. http://www.esur.org/guidelines/en/index.php. Zugegriffen: 15.07.2015

    Google Scholar 

  19. Galea N, Cantisani V, Taouli B (2013) Liver lesion detection and characterization: role of diffusion-weighted imaging. JMRI 37:1260–1276

    Article  PubMed  Google Scholar 

  20. Goshima S, Kanematsu M, Kondo H et al (2009) Optimal acquisition delay for dynamic contrast-enhanced MRI of hypervascular hepatocellular carcinoma. AJR 192:686–692

    Article  PubMed  Google Scholar 

  21. Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  22. Hamilton G, Yokoo T, Bydder M et al (2011) In vivo characterization of the liver fat (1)H MR spectrum. NMR Biomed 24:784–790

    Article  PubMed  Google Scholar 

  23. Hernando D, Levin YS, Sirlin CB et al (2014) Quantification of liver iron with MRI: state of the art and remaining challenges. JMRI 40:1003–1021

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hirokawa Y, Isoda H, Maetani YS et al (2008) MRI artifact reduction and quality improvement in the upper abdomen with PROPELLER and prospective acquisition correction (PACE) technique. AJR 191:1154–1158

    Article  PubMed  Google Scholar 

  25. Hossary SH, Zytoon AA, Eid M et al (2014) MR cholangiopancreatography of the pancreas and biliary system: a review of the current applications. Curr Probl Diagnostic Radiol 43:1–13

    Article  Google Scholar 

  26. Kantarci M, Pirimoglu B, Karabulut N et al (2013) Non-invasive detection of biliary leaks using Gd-EOB-DTPA-enhanced MR cholangiography: comparison with T2-weighted MR cholangiography. Eur Radiol 23:2713–2722

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kazmierczak PM, Theisen D, Thierfelder KM et al (2015) Improved detection of hypervascular liver lesions with CAIPIRINHA-Dixon-TWIST-volume-interpolated breath-hold examination. Investig Radiol 50:153–160

    Article  Google Scholar 

  28. Kenis C, Deckers F, De Foer B et al (2012) Diagnosis of liver metastases: can diffusion-weighted imaging (DWI) be used as a stand alone sequence? Eur J Radiol 81:1016–1023

    Article  PubMed  Google Scholar 

  29. Kim BS, Kim JH, Choi GM et al (2008) Comparison of three free-breathing T2-weighted MRI sequences in the evaluation of focal liver lesions. AJR 190:W19–27

    Article  PubMed  Google Scholar 

  30. Kim YK, Kim YK, Park HJ et al (2014) Noncontrast MRI with diffusion-weighted imaging as the sole imaging modality for detecting liver malignancy in patients with high risk for hepatocellular carcinoma. Magn Reson Imaging 32:610–618

    Article  PubMed  Google Scholar 

  31. Kuhn JP, Hernando D, Del Munoz RA et al (2012) Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy with MR imaging results. Radiology 265:133–142

    Article  PubMed Central  PubMed  Google Scholar 

  32. Low RN, Gurney J (2007) Diffusion-weighted MRI (DWI) in the oncology patient: value of breathhold DWI compared to unenhanced and gadolinium-enhanced MRI. JMRI 25:848–858

    Article  PubMed  Google Scholar 

  33. Lu W, Yu H, Shimakawa A et al (2008) Water-fat separation with bipolar multiecho sequences. Magn Reson Med 60:198–209

    Article  PubMed  Google Scholar 

  34. Manduca A, Oliphant TE, Dresner MA et al (2001) Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Analysis 5:237–254

    Article  CAS  Google Scholar 

  35. Michaely HJ, Morelli JN, Budjan J et al (2013) CAIPIRINHA-Dixon-TWIST (CDT)-Volume-Interpolated Breath-Hold Examination (VIBE): a new technique for fast time-resolved dynamic 3-Dimensional imaging of the abdomen with high spatial resolution. Invest Radiol 48:590–597

    Article  CAS  PubMed  Google Scholar 

  36. Muthupillai R, Lomas DJ, Rossman PJ et al (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269:1854–1857

    Article  CAS  PubMed  Google Scholar 

  37. Nakamura S, Nakaura T, Kidoh M et al (2013) Timing of the hepatic arterial phase at Gd-EOB-DTPA-enhanced hepatic dynamic MRI: comparison of the test-injection and the fixed-time delay method. Journal of magnetic resonance imaging. JMRI 38:548–554

    Article  PubMed  Google Scholar 

  38. Penner AH, Sprinkart AM, Kukuk GM et al (2013) Intravoxel incoherent motion model-based liver lesion characterisation from three b-value diffusion-weighted MRI. Eur Radiol 23:2773–2783

    Article  PubMed  Google Scholar 

  39. Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969

    Article  CAS  PubMed  Google Scholar 

  40. Pipe JG, Gibbs WN, Li Z et al (2014) Revised motion estimation algorithm for PROPELLER MRI. Magn Reson Med 72:430–437

    Article  PubMed  Google Scholar 

  41. Pruessmann KP, Weiger M, Scheidegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  42. Remmele S, Ring J, Senegas J et al (2011) Concurrent MR blood volume and vessel size estimation in tumors by robust and simultaneous DeltaR2 and DeltaR2* quantification. Magn Reson Med 66:144–153

    Article  PubMed  Google Scholar 

  43. Saranathan M, Rettmann DW, Hargreaves BA et al (2012) DIfferential Subsampling with Cartesian Ordering (DISCO): a high spatio-temporal resolution Dixon imaging sequence for multiphasic contrast enhanced abdominal imaging. JMRI 35:1484–1492

    Article  PubMed Central  PubMed  Google Scholar 

  44. Schar M, Eggers H, Zwart NR et al (2015) Dixon water-fat separation in PROPELLER MRI acquired with two interleaved echoes. Magn Reson Med. (Epub ahead of print) doi:DOI: 10.1002/mrm.25656

    Google Scholar 

  45. Sepponen RE, Sipponen JT, Tanttu JI (1984) A method for chemical shift imaging: demonstration of bone marrow involvement with proton chemical shift imaging. J Comput Assist Tomogr 8:585–587

    Article  CAS  PubMed  Google Scholar 

  46. Shinozaki K, Yoshimitsu K, Irie H et al (2004) Comparison of test-injection method and fixed-time method for depiction of hepatocellular carcinoma using dynamic steady-state free precession magnetic resonance imaging. J Comput Assist Tomogr 28:628–634

    Article  PubMed  Google Scholar 

  47. Storey P, Thompson AA, Carqueville CL et al (2007) R2* imaging of transfusional iron burden at 3T and comparison with 1.5T. JMRI 25:540–547

    Article  PubMed Central  PubMed  Google Scholar 

  48. Taouli B, Koh DM (2010) Diffusion-weighted MR imaging of the liver. Radiology 254:47–66

    Article  PubMed  Google Scholar 

  49. Tsochatzis EA, Bosch J, Burroughs AK (2014) Liver cirrhosis. Lancet 383:1749–1761

    Article  PubMed  Google Scholar 

  50. Venkatanarasimha N, Jenkins SJ, Yang N et al (2013) Impact of butylscopolamine on image quality of magnetic resonance cholangiopancreatography. Eur J Radiol 82:583–588

    Article  PubMed  Google Scholar 

  51. Venkatesh SK, Yin M, Ehman RL (2013) Magnetic resonance elastography of liver: technique, analysis, and clinical applications. JMRI 37:544–555

    Article  PubMed Central  PubMed  Google Scholar 

  52. Verlhac S, Morel M, Bernaudin F et al (2015) Liver iron overload assessment by MRI R2* relaxometry in highly transfused pediatric patients: an agreement and reproducibility study. Diagnostic Interv Imaging 96:259–264

    Article  CAS  Google Scholar 

  53. Colagrande S, Mazzoni LN, Mazzoni E et al (2013) Effects of gadoxetic acid on quantitative diffusion-weighted imaging of the liver. J Magn Reson Imaging 38:365–370

    Article  PubMed  Google Scholar 

  54. Yu MH, Lee JM, Yoon JH et al (2013) Clinical application of controlled aliasing in parallel imaging results in a higher acceleration (CAIPIRINHA)-volumetric interpolated breathhold (VIBE) sequence for gadoxetic acid-enhanced liver MR imaging. JMRI 38:1020–1026

    Article  PubMed  Google Scholar 

  55. Zech CJ, Herrmann KA, Dietrich O et al (2008) Black-blood diffusion-weighted EPI acquisition of the liver with parallel imaging: comparison with a standard T2-weighted sequence for detection of focal liver lesions. Invest Radiol 43:261–266

    Article  PubMed  Google Scholar 

  56. Zhang L, Tian C, Wang P et al (2015) Comparative study of image quality between axial T2-weighted BLADE and turbo spin-echo MRI of the upper abdomen on 3.0 T. Jap J Radiol 33(9):585–590

    Article  CAS  Google Scholar 

  57. Zhao F, Yuan J, Deng M et al (2013) Further exploration of MRI techniques for liver T1rho quantification. Quant Imaging Med Surg 3:308–315

    PubMed Central  PubMed  Google Scholar 

  58. Zhou WC, Zhang QB, Qiao L (2014) Pathogenesis of liver cirrhosis. WJG 20:7312–7324

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Persigehl.

Ethics declarations

Interessenkonflikt

K. Weiss ist Mitarbeiter von Philips Healthcare, jedoch hatten die weiteren Autoren D.M. Hedderich und T. Persigehl vollen Einfluss auf den Inhalt des vorliegenden Reviews und garantieren für dessen Unabhängigkeit. D. Maintz gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedderich, D.M., Weiss, K., Maintz, D. et al. Modernes MR-Protokoll für die Leberbildgebung. Radiologe 55, 1045–1056 (2015). https://doi.org/10.1007/s00117-015-0031-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-015-0031-4

Schlüsselwörter

Keywords

Navigation