Skip to main content
Log in

MRT bei interstitiellen Lungenerkrankungen

Was ist möglich?

MRI of interstitial lung diseases

What is possible?

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die MRT der Lunge entwickelt sich zu einer ernstzunehmenden dritten Säule der Thoraxdiagnostik neben dem Thoraxröntgen und der Computertomographie (CT). Ihr Wert in der pädiatrischen Lungendiagnostik oder für den wissenschaftlichen Einsatz, insbesondere wenn eine Strahlenexposition vermieden werden soll, ist unbestritten. Von allen Indikationen stellt die Diagnostik interstitieller Lungenerkrankungen die größte Herausforderung dar.

Ziel der Arbeit

Zusammenfassung des aktuellen Stands zu Möglichkeiten und Perspektiven der MRT für die Diagnostik interstitieller Lungenerkrankungen.

Material und Methoden

Zusammenfassung einer aktuellen Literaturrecherche und Bewertung der Ergebnisse vor dem Hintergrund eigener Erfahrungen mit der Lungen-MRT.

Ergebnisse

Allein aufgrund der geringeren Detailauflösung und der deutlich größeren Anfälligkeit für Artefakte ist die MRT der CT bei der Diagnostik interstitieller Lungenerkrankungen („interstitial lung diseases“, ILD) bei feinen Mustern (feinnetzige Fibrose, Mikronoduli) unterlegen, kann aber gröbere Fibrosen (Honigwabenmuster) detektieren. Zudem wurde an kleinen Fallgruppen gezeigt, dass die MRT diagnostisch wertvolle Informationen zur regionalen Lungenfunktion (Ventilation, Perfusion, mechanische Eigenschaften) und Entzündungsaktivität (natives Signal, Kontrastmitteldynamik) liefern kann.

Diskussion

Aktuell kann die morphologische Lungen-MRT ergänzend zur kardialen Diagnostik bei Sarkoidose für die umfassende kardiothorakale Bildgebung in einer Sitzung oder für Verlaufsbeobachtungen eingesetzt werden. Wenn sich die Möglichkeiten der MRT-basierten Lungenfunktionsdiagnostik und Beurteilung der Entzündungsaktivität klinisch robust umsetzen lassen, ist von einer deutlichen Erweiterung des Anwendungsspektrums auszugehen.

Abstract

Background

Magnetic resonance imaging (MRI) of the lungs is becoming increasingly appreciated as a third diagnostic imaging modality besides chest x-ray and computed tomography (CT). Its value is well acknowledged for pediatric patients or for scientific use particularly when radiation exposure should be strictly avoided. However, the diagnosis of interstitial lung disease is the biggest challenge of all indications. The objective of this article is a summary of the current state of the art for diagnostic MRI of interstitial lung diseases.

Material and methods

This article reflects the results of a current search of the literature and discusses them against the background of the authors own experience with lung MRI.

Results

Due to its lower spatial resolution and a higher susceptibility to artefacts MRI does not achieve the sensitivity of CT for the detection of small details for pattern recognition (e.g. fine reticulation and micronodules) but larger details (e.g. coarse fibrosis and honeycombing) can be clearly visualized. Moreover, it could be shown that MRI has the capability to add clinically valuable information on regional lung function (e.g. ventilation, perfusion and mechanical properties) and inflammation with native signal and contrast dynamics.

Discussion

In its present state MRI can be used for comprehensive cardiopulmonary imaging in patients with sarcoidosis or for follow-up of lung fibrosis after initial correlation with CT. Far more indications are expected when the capabilities of MRI for the assessment of regional lung function and activity of inflammation can be transferred into robust protocols for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Wielpütz MO, Heußel CP, Herth FJF, Kauczor H-U (2014) Radiological diagnosis in lung disease: factoring treatment options into the choice of diagnostic modality. Dtsch Ärztebl Int 111:181–187. doi:10.3238/arztebl.2014.0181

    PubMed Central  PubMed  Google Scholar 

  2. Wielpütz MO, Eichinger M, Puderbach M (2013) Magnetic resonance imaging of cystic fibrosis lung disease. J Thorac Imaging 28:151–159. doi:10.1097/RTI.0b013e31828d40d4

    Article  PubMed  Google Scholar 

  3. Schiebler ML, Bhalla S, Runo J et al (2013) Magnetic resonance and computed tomography imaging of the structural and functional changes of pulmonary arterial hypertension. J Thorac Imaging 28:178–193. doi:10.1097/RTI.0b013e31828d5c48

    Article  PubMed Central  PubMed  Google Scholar 

  4. Rajaram S, Swift AJ, Telfer A et al (2013) 3D contrast-enhanced lung perfusion MRI is an effective screening tool for chronic thromboembolic pulmonary hypertension: results from the ASPIRE registry. Thorax 68:677–678. doi:10.1136/thoraxjnl-2012-203020

    Article  PubMed  Google Scholar 

  5. Lutterbey G, Gieseke J, Falkenhausen M von et al (2005) Lung MRI at 3.0 T: a comparison of helical CT and high-field MRI in the detection of diffuse lung disease. Eur Radiol 15:324–328. doi:10.1007/s00330-004-2548-1

    Article  CAS  PubMed  Google Scholar 

  6. Biederer J, Beer M, Hirsch W et al (2012) MRI of the lung (2/3). Why – when – how? Insights Imaging. doi:10.1007/s13244-011-0146-8

  7. Wild JM, Marshall H, Bock M et al (2012) MRI of the lung (1/3): methods. Insights Imaging. doi:10.1007/s13244-012-0176-x

  8. Sommer G, Koenigkam-Santos M, Biederer J, Puderbach M (2014) Role of MRI for detection and characterization of pulmonary nodules. Radiologe 54:470–477. doi:10.1007/s00117-013-2604-4

    Article  CAS  PubMed  Google Scholar 

  9. Biederer J, Hintze C, Fabel M (2008) MRI of pulmonary nodules: technique and diagnostic value. Cancer Imaging 8:125–130. doi:PMC2413430

    Article  PubMed Central  PubMed  Google Scholar 

  10. Travis WD, Costabel U, Hansell DM et al (2013) An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 188:733–748. doi:10.1164/rccm.201308-1483ST

    Article  PubMed  Google Scholar 

  11. Barreto MM, Rafful PP, Rodrigues RS et al (2013) Correlation between computed tomographic and magnetic resonance imaging findings of parenchymal lung diseases. Eur J Radiol 82:e492–e501. doi:10.1016/j.ejrad.2013.04.037

    Article  PubMed  Google Scholar 

  12. Rizzi EB, Schinina‘ V, Cristofaro M et al (2011) Detection of pulmonary tuberculosis: comparing MR imaging with HRCT. BMC Infect Dis 11:243. doi:10.1186/1471-2334-11-243

    Article  PubMed  Google Scholar 

  13. Eichinger M, Optazaite D-E, Kopp-Schneider A et al (2012) Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur J Radiol 81:1321–1329. doi:10.1016/j.ejrad.2011.02.045

    Article  PubMed  Google Scholar 

  14. Wielpütz MO, Puderbach M, Kopp-Schneider A et al (2014) Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am J Respir Crit Care Med 189:956–965. doi:10.1164/rccm.201309-1659OC

    Article  PubMed  Google Scholar 

  15. Wielpütz M, Kauczor H-U (2012) MRI of the lung: state of the art. Diagn Interv Radiol 18:344–353. doi:10.4261/1305-3825.DIR.5365-11.0

    PubMed  Google Scholar 

  16. Rieger C, Herzog P, Eibel R et al (2008) Pulmonary MRI – a new approach for the evaluation of febrile neutropenic patients with malignancies. Support Care Cancer 16:599–606. doi:10.1007/s00520-007-0346-4

    Article  CAS  PubMed  Google Scholar 

  17. Lutterbey G, Gieseke J, Falkenhausen M von et al (2005) Lung MRI at 3.0 T: a comparison of helical CT and high-field MRI in the detection of diffuse lung disease. Eur Radiol 15:324–328. doi:10.1007/s00330-004-2548-1

    Article  CAS  PubMed  Google Scholar 

  18. Lutterbey G, Grohé C, Gieseke J et al (2007) Initial experience with lung-MRI at 3.0 T: Comparison with CT and clinical data in the evaluation of interstitial lung disease activity. Eur J Radiol 61:256–261. doi:10.1016/j.ejrad.2006.09.005

    Article  CAS  PubMed  Google Scholar 

  19. Yi CA, Lee KS, Han J et al (2008) 3-T MRI for differentiating inflammation- and fibrosis-predominant lesions of usual and nonspecific interstitial pneumonia: comparison study with pathologic correlation. AJR Am J Roentgenol 190:878–885. doi:10.2214/AJR.07.2833

    Article  PubMed  Google Scholar 

  20. Rajaram S, Swift AJ, Capener D et al (2012) Lung morphology assessment with balanced steady-state free precession MR imaging compared with CT. Radiology 263:569–577. doi:10.1148/radiol.12110990

    Article  PubMed  Google Scholar 

  21. Biederer J, Busse I, Grimm J et al (2002) Sensitivity of MRI in detecting alveolar infiltrates: experimental studies. Rofo 174:1033–1039. doi:12142984

    Article  CAS  PubMed  Google Scholar 

  22. Chung JH, Little BP, Forssen AV et al (2013) Proton MRI in the evaluation of pulmonary sarcoidosis: comparison to chest CT. Eur J Radiol 82:2378–2385. doi:10.1016/j.ejrad.2013.08.019

    Article  PubMed  Google Scholar 

  23. Puderbach M, Eichinger M, Gahr J et al (2007) Proton MRI appearance of cystic fibrosis: comparison to CT. Eur Radiol 17:716–724. doi:10.1007/s00330-006-0373-4

    Article  PubMed  Google Scholar 

  24. Chung JH, Cox CW, Forssen AV et al (2013) The dark lymph node sign on magnetic resonance imaging: a novel finding in patients with sarcoidosis. J Thorac Imaging. doi:10.1097/RTI.0b013e3182a4378b

  25. Johnson KM, Fain SB, Schiebler ML, Nagle S (2013) Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med 70:1241–1250. doi:10.1002/mrm.24570

    Article  PubMed Central  PubMed  Google Scholar 

  26. Bergin CJ, Glover GH, Pauly JM (1991) Lung parenchyma: magnetic susceptibility in MR imaging. Radiology 180:845–848. doi:10.1148/radiology.180.3.1871305

    Article  CAS  PubMed  Google Scholar 

  27. Iwasawa T, Ogura T, Sakai F et al (2014) CT analysis of the effect of pirfenidone in patients with idiopathic pulmonary fibrosis. Eur J Radiol 83:32–38. doi:10.1016/j.ejrad.2012.02.014

    Article  PubMed  Google Scholar 

  28. McFadden RG, Carr TJ, Wood TE (1987) Proton magnetic resonance imaging to stage activity of interstitial lung disease. Chest 92:31–39

    Article  CAS  PubMed  Google Scholar 

  29. Berthezène Y, Vexler V, Kuwatsuru R et al (1992) Differentiation of alveolitis and pulmonary fibrosis with a macromolecular MR imaging contrast agent. Radiology 185:97–103

    Article  PubMed  Google Scholar 

  30. Gaeta M, Blandino A, Scribano E et al (2000) Chronic infiltrative lung diseases: value of gadolinium-enhanced MRI in the evaluation of disease activity – early report. Chest 117:1173–1178

    Article  CAS  PubMed  Google Scholar 

  31. Jacob RE, Amidan BG, Soelberg J, Minard KR (2010) In vivo MRI of altered proton signal intensity and T2 relaxation in a bleomycin model of pulmonary inflammation and fibrosis. J Magn Reson Imaging 31:1091–1099. doi:10.1002/jmri.22166

    Article  PubMed  Google Scholar 

  32. Biederer J, Bauman G, Hintze C et al (2011) Magnetresonanztomographie. Pneumology 8:234–242. doi:10.1007/s10405-010-0440-z

    Article  Google Scholar 

  33. Cleveland ZI, Virgincar RS, Qi Y et al (2014) 3D MRI of impaired hyperpolarized (129) Xe uptake in a rat model of pulmonary fibrosis. NMR Biomed. doi:10.1002/nbm.3127

  34. Kaushik SS, Freeman MS, Yoon SW et al (2014) Measuring diffusion-limitation with a perfusion-limited gas-hyperpolarized 129Xe gas-transfer spectroscopy in patients with idiopathic pulmonary fibrosis. J Appl Physiol (1985). doi:10.1152/japplphysiol.00326.2014

  35. Mariappan YK, Glaser KJ, Levin DL et al (2013) Estimation of the absolute shear stiffness of human lung parenchyma using (1) H spin echo, echo planar MR elastography. J Magn Reson Imaging doi:10.1002/jmri.24479

    Google Scholar 

  36. Hirsch S, Posnansky O, Papazoglou S et al (2013) Measurement of vibration-induced volumetric strain in the human lung. Magn Reson Med 69:667–674. doi:10.1002/mrm.24294

    Article  PubMed  Google Scholar 

  37. Caravan P, Yang Y, Zachariah R et al (2013) Molecular magnetic resonance imaging of pulmonary fibrosis in mice. Am J Respir Cell Mol Biol 49:1120–1126. doi:10.1165/rcmb.2013-0039OC

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. J. Biederer, M.O. Wielpütz, B.J. Jobst und J. Dinkel geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Biederer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biederer, J., Wielpütz, M., Jobst, B. et al. MRT bei interstitiellen Lungenerkrankungen. Radiologe 54, 1204–1212 (2014). https://doi.org/10.1007/s00117-014-2738-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-014-2738-z

Schlüsselwörter

Keywords

Navigation