Skip to main content
Log in

Bildkontraste bei statischen Aufnahmen in der klinischen Magnetresonanztomographie

Teil 1: Kontrastgebende Gewebeeigenschaften

Contrast in static images in clinical magnetic resonance imaging

Part 1: Contrast properties of tissue

  • CME Zertifizierte Fortbildung
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Im Gegensatz zu röntgenbasierten radiologischen Untersuchungstechniken bietet die Magnetresonanztomographie (MRT) vielfältige Gewebekontraste. Dies kann man nutzen, um pathologische Befunde besser aufzufinden und zu charakterisieren. Die Basis der Bildkontraste in der MRT liegt in den chemischen und physikalischen Eigenschaften der in den Geweben vorhandenen Wasserstoffatome, insbesondere in ihren Bindungen an Wasser- und Lipidmoleküle, und in dem Milieu, in dem sich die wasserstoffhaltigen Moleküle aufhalten. Dieses Milieu wird hauptsächlich durch Stoffzusammensetzung, Viskosität und Temperatur, aber auch durch die mikroskopischen geometrischen Gegebenheiten im Gewebe bestimmt. Teil 1 dieses Fortbildungsartikels beschreibt diejenigen Kontrastmechanismen, die bei statischen klinischen Standarduntersuchungen verschiedener Organsysteme am häufigsten verwendet werden.

Abstract

In comparison to roentgen-based radiological examination techniques, magnetic resonance imaging (MRI) provides a wide variety of tissue contrast. This can be utilized for better detection and characterization of pathological findings. The basis of image contrast in MRI is the chemical and physical properties of the hydrogen atoms in tissue, in particular in their chemical bonds in water and lipid molecules and in the environment in which the hydrogen-containing molecules are contained. This environment is mainly determined by the composition of substances, viscosity and temperature as well as the microscopic geometrical conditions in tissue. Part 1 of this advanced education article describes those contrast mechanisms which are most commonly utilized in static clinical standard examinations of various organ systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Friedrich KM, Reiter G, Kaiser B et al (2011) High-resolution cartilage imaging of the knee at 3 T: basic evaluation of modern isotropic 3D MR-sequences. Eur J Radiol 78:398–405

    Article  PubMed  Google Scholar 

  2. Wetterling F, Corteville DM, Kalayciyan R et al (2012) Whole body sodium MRI at 3 T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer. Phys Med Biol 57:4555–4567

    Article  PubMed  Google Scholar 

  3. Pohmann R, Kienlin M von (2001) Accurate phosphorus metabolite images of the human heart by 3D acquisition-weighted CSI. Magn Reson Med 45:817–826

    Article  PubMed  CAS  Google Scholar 

  4. Hanson LG (2008) Is quantum mechanics necessary for understanding magnetic resonance? Concepts in Magn Reson, Part A 32:329–340

    Google Scholar 

  5. Bloch F (1946) Nuclear induction. Phys Rev 70:460–474

    Article  CAS  Google Scholar 

  6. Schick F (2005) Grundlagen der Magnetresonanztomographie. Radiologe 45:69–86

    Article  PubMed  CAS  Google Scholar 

  7. Tkach JA, Haacke EM (1988) A comparison of fast spin echo and gradient field echo sequences. Magn Reson Imaging 6:373–389

    Article  PubMed  CAS  Google Scholar 

  8. Robson MD, Bydder GM (2006) Clinical ultrashort echo time imaging of bone and other connective tissues. NMR Biomed 19:765–780

    Article  PubMed  Google Scholar 

  9. De Graaf RA (2007) In Vivo NMR Spectroscopy, 2. Aufl. Wiley & Sons, Chichester

  10. Reeder SB, Hines CD, Yu H et al (2009) On the definition of fat-fraction for in vivo fat quantification with magnetic resonance imaging. Proc Intl Soc Mag Reson Med 17:211

    Google Scholar 

  11. Bazelaire CM de, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659

    Article  PubMed  Google Scholar 

  12. Wansapura JP, Holland SK, Dunn RS, Ball WS Jr (1999) NMR relaxation times in the human brain at 3.0 Tesla. J Magn Reson Imaging 9:531–538

    Article  PubMed  CAS  Google Scholar 

  13. Bydder GM, Pennock JM, Steiner RE et al (1984) The NMR diagnosis of cerebral tumors. Magn Reson Med 1:5–29

    Article  PubMed  CAS  Google Scholar 

  14. Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23:815–850

    Article  PubMed  CAS  Google Scholar 

  15. Hopkins JA, Wehrli FW (1997) Magnetic susceptibility measurement of insoluble solids by NMR: magnetic susceptibility of bone. Magn Reson Med 37:494–500

    Article  PubMed  CAS  Google Scholar 

  16. Jain V, Abdulmalik O, Propert KJ, Wehrli FW (2012) Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification. Magn Reson Med 68:863–867

    Article  PubMed  CAS  Google Scholar 

  17. Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14:68–78

    Article  PubMed  CAS  Google Scholar 

  18. Belliveau JW, Kennedy DN Jr, McKinstry RC et al (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719

    Article  PubMed  CAS  Google Scholar 

  19. Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618

    Article  PubMed  Google Scholar 

  20. Langkammer C, Schweser F, Krebs N et al (2012) Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage 62:1593–1599

    Article  PubMed  Google Scholar 

  21. Babcock EE, Brateman L, Weinreb JC et al (1985) Edge artifacts in MR images: chemical shift effect. J Comput Assist Tomogr 9:252–257

    Article  PubMed  CAS  Google Scholar 

  22. Bruegel M, Holzapfel K, Gaa J et al (2008) Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 18:477–485

    Article  PubMed  Google Scholar 

  23. Cihangiroglu M, Uluğ AM, Firat Z et al (2009) High b-value diffusion-weighted MR imaging of normal brain at 3 T. Eur J Radiol 69:454–458

    Article  PubMed  Google Scholar 

  24. Straka M, Albers GW, Bammer R (2010) Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging 32:1024–1037

    Article  PubMed  Google Scholar 

  25. Roberts TP, Rowley HA (2003) Diffusion weighted magnetic resonance imaging in stroke. Eur J Radiol 45:185–194

    Article  PubMed  Google Scholar 

  26. Charles-Edwards EM, deSouza NM (2006) Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 13:135–143

    Article  Google Scholar 

  27. Mori S, Oishi K, Faria AV (2009) White matter atlases based on diffusion tensor imaging. Curr Opin Neurol 22:362–369

    Article  PubMed  Google Scholar 

  28. Laun FB, Fritzsche KH, Kuder TA, Stieltjes B (2011) Einführung in die Grundlagen der Diffusionsbildgebung. Radiologe 51:170–179

    Article  PubMed  CAS  Google Scholar 

  29. Wolff SD, Balaban RS (1994) Magnetization transfer imaging: practical aspects and clinical applications. Radiology 192:593–599

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Schick.

Allgemeine Literatur zu den Grundlagen der MRT

Allgemeine Literatur zu den Grundlagen der MRT

  • Ewen K (2003) Moderne Bildgebung, Thieme, Stuttgart

  • Reiser M, Semmler W, Hricak H (2008) Magnetresonanztomographie, 4. Aufl. Springer, Berlin

  • Rummeny EJ, Reimer P, Heindel W (2011) Ganzkörper MR-Tomographie, 2. Aufl. Thieme, Stuttgart

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schick, F. Bildkontraste bei statischen Aufnahmen in der klinischen Magnetresonanztomographie. Radiologe 53, 441–456 (2013). https://doi.org/10.1007/s00117-013-2486-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-013-2486-5

Schlüsselwörter

Keywords

Navigation