Skip to main content

Advertisement

Log in

Kontrastverstärkter Ultraschall der Skelettmuskulatur

Contrast-enhanced ultrasound of skeletal muscle

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Funktionelle Bildgebungstechniken tragen zur wachsenden Rolle der Bildgebung bei Muskelerkrankungen bei, da Änderungen in der Morphologie des Skelettmuskels alleine als nicht spezifisch für eine bestimmte Erkrankung gelten. Ein gutes Beispiel dieser funktionellen Bildgebungstechniken ist der kontrastverstärkte Ultraschall (CEUS) zur Visualisierung und Quantifizierung (patho-)physiologischer Informationen zur Mikrozirkulation des Skelettmuskels in vivo. Die Perfusion, d. h. der kapilläre Blutfluss pro Gewebeeinheit ist ein wichtiger funktioneller Parameter. Eine pathologisch veränderte Skelettmuskelperfusion findet man bei verschiedenen Erkrankungen wie degenerativen und entzündlichen Myopathien sowie der peripheren arteriellen Verschlusskrankheit (pAVK). Dieser Artikel gibt eine Übersicht der technischen Grundlagen und fokussiert sich dann auf klinisch viel versprechende Anwendungen der mikrovaskulären Bildgebung mittels CEUS, die bereits die Diagnostik dieser muskulären Erkrankungen verbessert haben.

Zur Diagnostik einer Myositis ist der CEUS besser geeignet als der konventionelle B-Mode-Ultraschall, weil der CEUS die entzündlich induzierte muskuläre Hyperperfusion in einer akuten Myositis quantifizieren kann. Dies konnte schon mit hochenergetischen („High-mechanical index“-)Techniken unter Verwendung eines Ultraschallkontrastmittels der ersten Generation demonstriert werden. Niederenergetische CEUS-Techniken („low-mechanical index“) erfordern die Verwendung eines Ultraschallkontrastmittels der zweiten Generation und erlauben darüber hinaus die Echtzeitquantifizierung der muskulären Mikrozirkulation in Ruhe und während Belastung. Mit dieser CEUS-Methode lässt sich der Einfluss verschiedener Belastungsintensitäten auf die Mikrozirkulation des belasteten Muskels analysieren. Zudem kann die arterielle Perfusionsreserve bei einer pAVK adäquat mit Low-mechanical-index-CEUS-Techniken untersucht werden. Ersten Ergebnissen zufolge ist die arterielle Perfusionsreserve bei Patienten mit pAVK im Vergleich zu gesunden Probanden reduziert. Schlussfolgernd lässt sich konstatieren, dass moderne CEUS-Techniken über unspezifische morphologische Veränderungen hinaus, wie z. B. ödematöse oder lipomatöse Veränderungen bzw. Hyper- oder Atrophie, einen Einblick in die muskuläre Pathophysiologie erlauben.

Abstract

Functional imaging can increase the role of imaging in muscular diseases, as alterations of muscle morphology alone are non-specific for a particular disease. A good example for these functional imaging techniques is to use contrast-enhanced ultrasound (CEUS) to visualize and quantify in vivo (patho-) physiological information about the skeletal muscle microcirculation. Perfusion, i.e. the blood flow per tissue unit including capillary flow, is an important functional parameter. Pathological changes of skeletal muscle perfusion can be found in various clinical conditions, such as degenerative or inflammatory myopathy or peripheral arterial disease (PAD). This article reviews the theoretical basics of functional radiological techniques for assessing skeletal muscle perfusion and focuses on applications of microvascular imaging by CEUS which has improved the diagnosis of these muscular disorders. For evaluation of myositis, CEUS is more efficient in the diagnostic work-up than routine b-mode ultrasound because CEUS can detect inflammation-induced muscular hyperperfusion in acute myositis. This has already been demonstrated by high-mechanical index techniques using a first generation ultrasound contrast agent. Low-mechanical index CEUS techniques that require the use of a second generation contrast agent allow real-time quantification of muscular microcirculation at rest and during exercise. Using this CEUS method, the influence of different exercise intensities on the microcirculation of the exercising muscle becomes detectable. Moreover, the arterial perfusion reserve in PAD can be adequately examined using low-mechanical index CEUS. Initial findings have shown that the arterial perfusion reserve in patients suffering from PAD is reduced in comparison to healthy volunteers. In conclusion, modern CEUS techniques can offer deeper insights in muscular (patho-) physiology than just illustrating unspecific myopathic manifestations using conventional diagnostic imaging, such as edematous or lipomatous changes, hypertrophy or atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Aboyans V, Criqui MH, Denenberg JO et al (2006) Risk factors for progression of peripheral arterial disease in large and small vessels. Circulation 113:2623–2629

    Article  PubMed  Google Scholar 

  2. Amarteifio E, Krix M, Wormsbecher S et al (2010) Dynamischer kontrastverstärkter low-MI Ultraschall als neues diagnostisches Verfahren zur Evaluation der Mikrozirkulation im Skelettmuskel bei peripherer arterieller Verschlusskrankheit. Ultraschall Med 31:S59

    Article  Google Scholar 

  3. Arditi M, Frinking PJ, Zhou X, Rognin NG (2006) A new formalism for the quantification of tissue perfusion by the destruction-replenishment method in contrast ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 53:1118–1129

    Article  PubMed  Google Scholar 

  4. Bragadeesh T, Sari I, Pascotto M et al (2005) Detection of peripheral vascular stenosis by assessing skeletal muscle flow reserve. J Am Coll Cardiol 45:780–785

    Article  PubMed  Google Scholar 

  5. Calliada F, Campani R, Bottinelli O et al (1998) Ultrasound contrast agents: basic principles. Eur J Radiol 27(suppl 2):S157–160

    Article  PubMed  Google Scholar 

  6. Delorme S, Krix M, Albrecht T (2006) Ultrasound contrast media – principles and clinical applications. Fortschr Röntgenstr 178:155–164

    Article  CAS  Google Scholar 

  7. Duerschmied D, Olson L, Olschewski M et al (2006) Contrast ultrasound perfusion imaging of lower extremities in peripheral arterial disease: a novel diagnostic method. Eur Heart J 27:310–315

    Article  PubMed  Google Scholar 

  8. Duerschmied D, Zhou Q, Rink E et al (2009) Simplified contrast ultrasound accurately reveals muscle perfusion deficits and reflects collateralization in PAD. Atherosclerosis 202:505–512

    Article  PubMed  CAS  Google Scholar 

  9. Frank LR, Wong EC, Haseler LJ, Buxton RB (1999) Dynamic imaging of perfusion in human skeletal muscle during exercise with arterial spin labelling. Magn Reson Med 42:258–267

    Article  PubMed  CAS  Google Scholar 

  10. Hudson JM, Karshafian R, Burns PN (2009) Quantification of flow using ultrasound and microbubbles: a disruption replenishment model based on physical principles. Ultrasound Med Biol 35:2007–2020

    Article  PubMed  Google Scholar 

  11. Krix M, Kauczor HU, Delorme S (2003) Quantification of tissue perfusion with novel ultrasound methods. Radiologe 43:823–830

    Article  PubMed  CAS  Google Scholar 

  12. Krix M, Kiessling F, Farhan N et al (2003) A multivessel model describing replenishment kinetics of ultrasound contrast agent for quantification of tissue perfusion. Ultrasound Med Biol 29:1421–1430

    Article  PubMed  Google Scholar 

  13. Krix M, Krakowski-Roosen H, Armarteifio E et al (2009) Comparison of transient arterial occlusion and muscle exercise provocation for assessment of perfusion reserve in skeletal muscle with real-time contrast-enhanced ultrasound. Eur J Radiol. DOI 10.1016/j.ejrad.2009.11.014

  14. Krix M, Krakowski-Roosen H, Kauczor HU et al (2009) Real-time contrast-enhanced ultrasound for the assessment of perfusion dynamics in skeletal muscle. Ultrasound Med Biol 35:1587–1595

    Article  PubMed  Google Scholar 

  15. Krix M, Plathow C, Kiessling F et al (2004) Quantification of perfusion of liver tissue and metastases using a multivessel model for replenishment kinetics of ultrasound contrast agents. Ultrasound Med Biol 30:1355–1363

    Article  PubMed  Google Scholar 

  16. Krix M, Weber M-A, Kauczor HU et al (2010) Changes in the micro-circulation of skeletal muscle due to varied isometric exercise assessed by contrast-enhanced ultrasound. Eur J Radiol 76:110–116

    Article  PubMed  Google Scholar 

  17. Krix M, Weber M-A, Krakowski-Roosen H et al (2005) Assessment of skeletal muscle perfusion using contrast-enhanced ultrasonography. J Ultrasound Med 24:431–441

    PubMed  Google Scholar 

  18. Ledermann HP, Heidecker HG, Schulte AC et al (2006) Calf muscles imaged at BOLD MR: correlation with TcPO2 and flowmetry measurements during ischemia and reactive hyperemia – initial experience. Radiology 241:477–484

    Article  PubMed  Google Scholar 

  19. Ledermann HP, Schulte AC, Heidecker HG et al (2006) Blood oxygenation level-dependent magnetic resonance imaging of the skeletal muscle in patients with peripheral arterial occlusive disease. Circulation 113:2929–2935

    Article  PubMed  Google Scholar 

  20. Lovitt S, Marden FA, Gundogdu B, Ostrowski ML (2004) MRI in myopathy. Neurol Clin 22:509–538

    Article  PubMed  Google Scholar 

  21. Lutz AM, Weishaupt D, Amann-Vesti BR et al (2004) Assessment of skeletal muscle perfusion by contrast medium first-pass magnetic resonance imaging: technical feasibility and preliminary experience in healthy volunteers. J Magn Reson Imaging 20:111–121

    Article  PubMed  Google Scholar 

  22. Mulder AH, Van Dijk AP, Smits P, Tack CJ (2008) Real-time contrast imaging: a new method to monitor capillary recruitment in human forearm skeletal muscle. Microcirculation 15:203–213

    Article  PubMed  Google Scholar 

  23. Murrant CL, Sarelius IH (2000) Coupling of muscle metabolism and muscle blood flow in capillary units during contraction. Acta Physiol Scand 168:531–541

    Article  PubMed  CAS  Google Scholar 

  24. Peetrons P (2002) Ultrasound of muscles. Eur Radiol 12:35–43

    Article  PubMed  CAS  Google Scholar 

  25. Porter TR, Xie F (1995) Transient myocardial contrast after initial exposure to diagnostic ultrasound pressures with minute doses of intravenously injected microbubbles. Demonstration and potential mechanisms. Circulation 92:2391–2395

    PubMed  CAS  Google Scholar 

  26. Scott DL, Kingsley GH (2004) Use of imaging to assess patients with muscle disease. Curr Opin Rheumatol 16:678–683

    Article  PubMed  Google Scholar 

  27. Slaaf DW, Oude Egbrink MG (2002) Capillaries and flow redistribution play an important role in muscle blood flow reserve capacity. J Mal Vasc 27:63–67

    PubMed  CAS  Google Scholar 

  28. Toussaint JF, Kwong KK, Mkparu FO et al (1996) Perfusion changes in human skeletal muscle during reactive hyperemia measured by echo-planar imaging. Magn Reson Med 35:62–69

    Article  PubMed  CAS  Google Scholar 

  29. Versluis B, Backes WH, van Eupen MG et al (2011) Magnetic resonance imaging in peripheral arterial disease: reproducibility of the assessment of morphological and functional vascular status. Invest Radiol 46:11–24

    Article  PubMed  Google Scholar 

  30. Weber M-A (2009) Ultrasound in the inflammatory myopathies. Ann New York Acad Sci 1154:159–170

    Article  Google Scholar 

  31. Weber M-A, Essig M, Kauczor HU (2007) Radiological diagnostics of muscle diseases. RöFo 179:712–720

    PubMed  Google Scholar 

  32. Weber M-A, Hildebrandt W, Schröder L et al (2010) Concentric resistance training increases muscle strength without affecting microcirculation. Eur J Radiol 73:614–621

    Article  PubMed  Google Scholar 

  33. Weber M-A, Jappe U, Essig M et al (2006) Contrast-enhanced ultrasound in dermatomyositis and polymyositis. J Neurol 253:1625–1632

    Article  PubMed  Google Scholar 

  34. Weber M-A, Krakowski-Roosen H, Delorme S et al (2006) Relationship of skeletal muscle perfusion measured by contrast-enhanced ultrasonography to histologic microvascular density. J Ultrasound Med 25:583–591

    PubMed  Google Scholar 

  35. Weber M-A, Krakowski-Roosen H, Hildebrandt W et al (2007) Assessment of metabolism and microcirculation of healthy skeletal muscles by magnetic resonance and ultrasound techniques. J Neuroimaging 17:323–331

    Article  PubMed  Google Scholar 

  36. Weber M-A, Krakowski-Roosen H, Schröder L et al (2009) Morphology, metabolism, microcirculation, and strength of skeletal muscles in cancer-related cachexia. Acta Oncol 48:116–124

    Article  PubMed  Google Scholar 

  37. Weber M-A, Krix M, Delorme S (2007) Quantitative evaluation of muscle perfusion with CEUS and with MR. Eur Radiol 17:2663–2674

    Article  PubMed  Google Scholar 

  38. Weber M-A, Krix M, Jappe U et al (2006) Pathologic skeletal muscle perfusion in patients with myositis: detection with quantitative contrast-enhanced US – initial results. Radiology 238:640–649

    Article  PubMed  Google Scholar 

  39. Wei K, Jayaweera AR, Firoozan S et al (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97:473–483

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Die Autoren weisen auf folgende Beziehungen hin: Prof. Dr. Krix ist Mitarbeiter der Firma Bracco Imaging Germany, Konstanz, die das Ultraschallkontrastmittel SonoVue® vertreibt. Prof. Dr. Weber und Frau Wormsbecher geben an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-A. Weber M.Sc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, MA., Wormsbecher, S. & Krix, M. Kontrastverstärkter Ultraschall der Skelettmuskulatur. Radiologe 51, 497–505 (2011). https://doi.org/10.1007/s00117-010-2106-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-010-2106-6

Schlüsselwörter

Keywords

Navigation