Skip to main content
Log in

Strategien zur Reduktion der CT-Strahlendosis

Strategies for reducing the CT radiation dose

  • Übersichten
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die rasante technische Weiterentwicklung der CT hat in den letzten Jahren zu einer deutlichen Zunahme der diagnostischen Möglichkeiten geführt, mit dem Resultat, dass die CT-Untersuchungszahlen weltweit angestiegen sind. Dies hat ebenfalls Auswirkung auf die Strahlenexposition der Bevölkerung. Bis heute sind zahlreiche Publikationen erschienen, die gezeigt haben, dass eine Dosisreduktion erreicht werden kann, ohne dadurch die Bildqualität und Sensitivität der CT zu beeinträchtigen. Die Mehrzahl der Strategien zur Dosisoptimierung sind einfach anzuwenden und unabhängig von der Detektorkonfiguration des CT-Scanners. Im vorliegenden Übersichtsartikel werden die wichtigsten Methoden vorgestellt: indikationsabhängige Methoden (z. B. rechtfertigende Indikation, Reduktion der Röhrenspannung für die CT-Angiographie, Wahl von Kollimation und Pitchfaktor, Minimierung der Untersuchungsphasen, Senkung der Röhrenspannung und des -stroms für die Nativphase), herstellerabhängige Methoden (z. B. automatische Röhrenstrommodulation, adaptive Filter zur Reduktion des Bildrauschens, iterative Bildrekonstruktion) und allgemeine Methoden (z. B. Patientenzentrierung im Isozentrum der CT-Gantry, Reduktion der Scanlänge, Anwendung von Röntgenschutzmitteln, Reduktion der Röhrenspannung und/oder des -stroms für den CT-Planungsscan).

Abstract

The rapid technical advances in computed tomography have led to an increased number of clinical indications. Unfortunately, at the same time the radiation exposure to the population has also increased due to the increased total number of CT examinations. In the last few years various publications have demonstrated the feasibility of radiation dose reduction for CT examinations with no compromise in image quality and loss in interpretation accuracy. The majority of the proposed methods for dose optimization are easy to apply and are independent of the detector array configuration. This article reviews indication-dependent principles (e.g. application of reduced tube voltage for CT angiography, selection of the collimation and the pitch, reducing the total number of imaging series, lowering the tube voltage and tube current for non-contrast CT scans), manufacturer-dependent principles (e.g. accurate application of automatic modulation of tube current, use of adaptive image noise filter and use of iterative image reconstruction) and general principles (e.g. appropriate patient-centering in the gantry, avoiding over-ranging of the CT scan, lowering the tube voltage and tube current for survey CT scans) which lead to radiation dose reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Brenner DJ, Hall EJ (2007) Computed tomography – an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  CAS  PubMed  Google Scholar 

  2. Berrington Gonzalez A de, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169:2071–2077

    Article  Google Scholar 

  3. Strahlenschutzkommission (2006) Orientierungshilfe für radiologische und nuklearmedizinische Untersuchungen. ISBN 3-87344-130-6 2006

  4. American College of Radiology Appropriateness Criteria: http://www.acr.org/secondarymainmenucategories/quality_safety/app_criteria.aspx

  5. Kalra MK, Maher MM, Toth TL et al (2004) Radiation from „extra“ images acquired with abdominal and/or pelvic CT: effect of automatic tube current modulation. Radiology 232:409–414

    Article  PubMed  Google Scholar 

  6. Prokop M (2008) Radiation dose in computed tomography. Risks and challenges. Radiologe 48:229–242

    Article  CAS  PubMed  Google Scholar 

  7. Campbell J, Kalra MK, Rizzo S et al (2005) Scanning beyond anatomic limits of the thorax in chest CT: findings, radiation dose, and automatic tube current modulation. AJR Am J Roentgenol 185:1525–1530

    Article  PubMed  Google Scholar 

  8. Guite K, Hinshaw JL, Ronallo F, Lee F (2009) RSNA Scientific Meeting

  9. Loupatatzis C, Schindera S, Gralla J et al (2008) Whole-body computed tomography for multiple traumas using a triphasic injection protocol. Eur Radiol 18:1206–1214

    Article  PubMed  Google Scholar 

  10. Kekelidze M, Dwarkasing RS, Dijkshoorn ML et al (2010) Kidney and urinary tract imaging: triple-bolus multidetector CT urography as a one-stop shop – protocol design, opacification, and image quality analysis. Radiology 255:508–516

    Article  PubMed  Google Scholar 

  11. Stolzmann P, Frauenfelder T, Pfammatter T et al (2008) Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology 249:682–691

    Article  PubMed  Google Scholar 

  12. Graser A, Johnson TR, Hecht EM et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252:433–440

    Article  PubMed  Google Scholar 

  13. Chandarana H, Godoy MC, Vlahos I et al (2008) Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms – initial observations. Radiology 249:692–700

    Article  PubMed  Google Scholar 

  14. Ferda J, Novak M, Mirka H et al (2009) The assessment of intracranial bleeding with virtual unenhanced imaging by means of dual-energy CT angiography. Eur Radiol 19:2518–2522

    Article  PubMed  Google Scholar 

  15. McCollough CH, Bruesewitz MR, Kofler JM Jr (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:503–512

    Article  PubMed  Google Scholar 

  16. Schindera ST, Nelson RC, Toth TL et al (2008) Effect of patient size on radiation dose for abdominal MDCT with automatic tube current modulation: phantom study. AJR Am J Roentgenol 190:W100–W105

    Article  PubMed  Google Scholar 

  17. Stover B, Rogalla P (2008) CT examinations in children. Radiologe 48:243–248

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Udayasankar UK, Toth TL et al (2007) Automatic patient centering for MDCT: effect on radiation dose. AJR Am J Roentgenol 188:547–552

    Article  PubMed  Google Scholar 

  19. Li J, Udayasankar UK, Toth TL et al (2008) Application of automatic vertical positioning software to reduce radiation exposure in multidetector row computed tomography of the chest. Invest Radiol 43:447–452

    Article  PubMed  Google Scholar 

  20. Kalra MK, Maher MM, Kamath RS et al (2004) Sixteen-detector row CT of abdomen and pelvis: study for optimization of z-axis modulation technique performed in 153 patients. Radiology 233:241–249

    Article  PubMed  Google Scholar 

  21. Schindera ST, Nelson RC, Yoshizumi T et al (2009) Effect of automatic tube current modulation on radiation dose and image quality for low tube voltage multidetector row CT angiography: phantom study. Acad Radiol 16:997–1002

    Article  PubMed  Google Scholar 

  22. Heyer CM, Mohr PS, Lemburg SP et al (2007) Image quality and radiation exposure at pulmonary CT angiography with 100- or 120-kVp protocol: prospective randomized study. Radiology 245:577–583

    Article  PubMed  Google Scholar 

  23. Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M et al (2006) CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241:899–907

    Article  PubMed  Google Scholar 

  24. Wintersperger B, Jakobs T, Herzog P et al (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341

    Article  CAS  PubMed  Google Scholar 

  25. Kalva SP, Sahani DV, Hahn PF, Saini S (2006) Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr 30:391–397

    Article  PubMed  Google Scholar 

  26. Szucs-Farkas Z, Kurmann L, Strautz T et al (2008) Patient exposure and image quality of low-dose pulmonary computed tomography angiography: comparison of 100- and 80-kVp protocols. Invest Radiol 43:871–876

    Article  PubMed  Google Scholar 

  27. Szucs-Farkas Z, Strautz T, Patak MA et al (2009) Is body weight the most appropriate criterion to select patients eligible for low-dose pulmonary CT angiography? Analysis of objective and subjective image quality at 80 kVp in 100 patients. Eur Radiol 19:1914–1922

    Article  PubMed  Google Scholar 

  28. Bischoff B, Hein F, Meyer T et al (2009) Impact of a reduced tube voltage on CT angiography and radiation dose: results of the PROTECTION I study. JACC Cardiovasc Imaging 2:940–946

    Article  PubMed  Google Scholar 

  29. Leschka S, Stolzmann P, Schmid FT et al (2008) Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur Radiol 18:1809–1817

    Article  PubMed  Google Scholar 

  30. Brink M, Lange F de, Oostveen LJ et al (2008) Arm raising at exposure-controlled multidetector trauma CT of thoracoabdominal region: higher image quality, lower radiation dose. Radiology 249:661–670

    Article  PubMed  Google Scholar 

  31. Hidajat N, Schroder RJ, Vogl T et al (1996) The efficacy of lead shielding in patient dosage reduction in computed tomography. Rofo 165:462–465

    CAS  PubMed  Google Scholar 

  32. Grobe H, Sommer M, Koch A et al (2009) Dose reduction in computed tomography: the effect of eye and testicle shielding on radiation dose measured in patients with beryllium oxide-based optically stimulated luminescence dosimetry. Eur Radiol 19:1156–1160

    Article  PubMed  Google Scholar 

  33. Vollmar SV, Kalender WA (2008) Reduction of dose to the female breast in thoracic CT: a comparison of standard-protocol, bismuth-shielded, partial and tube-current-modulated CT examinations. Eur Radiol 18:1674–1682

    Article  PubMed  Google Scholar 

  34. Kalra MK, Dang P, Singh S et al (2009) In-plane shielding for CT: effect of off-centering, automatic exposure control and shield-to-surface distance. Korean J Radiol 10:156–163

    Article  PubMed  Google Scholar 

  35. Coursey C, Frush DP, Yoshizumi T et al (2008) Pediatric chest MDCT using tube current modulation: effect on radiation dose with breast shielding. AJR Am J Roentgenol 190:W54–W61

    Article  PubMed  Google Scholar 

  36. Beaconsfield T, Nicholson R, Thornton A, Al-Kutoubi A (1998) Would thyroid and breast shielding be beneficial in CT of the head? Eur Radiol 8:664–667

    Article  CAS  PubMed  Google Scholar 

  37. Verdun FR, Meuli RA, Bochud FO et al (1996) Image quality and dose in spiral computed tomography. Eur Radiol 6:485–488

    Article  CAS  PubMed  Google Scholar 

  38. Rampado O, Marchisio F, Izzo A et al (2009) Effective dose and image quality evaluations of an automatic CT tube current modulation system with an anthropomorphic phantom. Eur J Radiol 72:181–187

    Article  CAS  PubMed  Google Scholar 

  39. Funama Y, Awai K, Miyazaki O et al (2006) Improvement of low-contrast detectability in low-dose hepatic multidetector computed tomography using a novel adaptive filter: evaluation with a computer-simulated liver including tumors. Invest Radiol 41:1–7

    Article  PubMed  Google Scholar 

  40. Kalra MK, Maher MM, Blake MA et al (2004) Detection and characterization of lesions on low-radiation-dose abdominal CT images postprocessed with noise reduction filters. Radiology 232:791–797

    Article  PubMed  Google Scholar 

  41. Wessling J, Esseling R, Raupach R et al (2007) The effect of dose reduction and feasibility of edge-preserving noise reduction on the detection of liver lesions using MSCT. Eur Radiol 17:1885–1891

    Article  PubMed  Google Scholar 

  42. Martinsen AC, Saether HK, Olsen DR et al (2008) Reduction in dose from CT examinations of liver lesions with a new postprocessing filter: a ROC phantom study. Acta Radiol 49:303–309

    Article  PubMed  Google Scholar 

  43. Kropil P, Lanzman RS, Walther C et al (2009) Dose reduction and image quality in MDCT of the upper abdomen: potential of an adaptive post-processing Filter. Rofo, in press

  44. Marin D, Nelson RC, Schindera ST et al (2010) Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm – initial clinical experience. Radiology 254:145–153

    Article  PubMed  Google Scholar 

  45. Hara AK, Paden RG, Silva AC et al (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 193:764–771

    Article  PubMed  Google Scholar 

  46. Silva AC, Lawder HJ, Hara A et al (2010) Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol 194:191–199

    Article  PubMed  Google Scholar 

  47. O’Daniel JC, Stevens DM, Cody DD (2005) Reducing radiation exposure from survey CT scans. AJR Am J Roentgenol 185:509–515

    Google Scholar 

  48. Nauer CB, Kellner-Weldon F, Von Allmen G et al (2009) Effective doses from scan projection radiographs of the head: impact of different scanning practices and comparison with conventional radiography. AJNR Am J Neuroradiol 30:155–159

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: Dr. Schindera erhielt Drittmittel im Rahmen eines Kooperationsvertrags von Siemens Healthcare Sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.T. Schindera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schindera, S., Nauer, C., Treier, R. et al. Strategien zur Reduktion der CT-Strahlendosis. Radiologe 50, 1120–1127 (2010). https://doi.org/10.1007/s00117-010-2053-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-010-2053-2

Schlüsselwörter

Keywords

Navigation