Skip to main content

Advertisement

Log in

Screening bei Herz- und Gefäßkrankheiten

Screening in cardiovascular diseases

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Nach wie vor zählen kardiovaskuläre Erkrankungen zu den häufigsten Todesursachen in den westlichen industrialisierten Ländern. Die 5 häufigsten Todesursachen in Deutschland sind alle mit arteriosklerotischen Veränderungen des Gefäßsystems vergesellschaftet. Die arteriosklerotischen Veränderungen der peripheren Gefäße stellen durch ihre teilweise langfristige Behandlung sowie die mögliche Einschränkung der Arbeitsfähigkeit der Patienten einen nicht unerheblichen wirtschaftlichen Faktor dar. Diese Tatsachen lassen ein Screening nach Erkrankungen des arteriosklerotischen Formenkreises sinnvoll erscheinen, da bekanntermaßen Gefäßveränderungen in einem frühen, teilweise noch asymptomatischen Stadium deutlich besser beeinflusst werden können als zu einem späten, bereits symptomatischen Zeitpunkt. Nicht immer ist hier eine kurative Therapie möglich, das Voranschreiten der Erkrankung kann jedoch häufig verlangsamt werden.

Eine Limitation bei der Darstellung des arteriellen Gefäßsystems war bisher die Notwendigkeit invasiver, teilweise mit ionisierender Strahlung verbundener Untersuchungen. Nichtinvasive, klinische Untersuchungen, wie z. B. der „ankle brachial index“ (ABI) als Indikator einer peripheren arteriellen Verschlusskrankheit (PAVK), können nur einen Hinweis auf das Vorliegen arteriosklerotischer Veränderungen liefern. Eine genaue Lokalisation bzw. die Beurteilung des Ausmaßes einzelner Veränderungen sind mit diesen Methoden nicht möglich.

Im Gegensatz hierzu bietet die MRT die Möglichkeit der nichtinvasiven und trotzdem sehr genauen Gefäßbildgebung.

Abstract

Cardiovascular disease still ranks number one in the mortality statistics in the industrialized world. In Germany the five most common causes of death are all associated with arteriosclerotic changes of the arterial vasculature. As the treatment often extends over long periods and it can be impossible for patients to work, peripheral arterial occlusive disease (PAOD) constitutes a not inconsiderable economic factor. Thus, screening for arteriosclerotic disease seems to be reasonable, because the potential for influencing arteriosclerotic changes is known to be higher in an early stage of the disease even before symptoms become apparent. Not every case can be cured, but progression can frequently be slowed down.

The need for invasive procedures, some of them associated with ionizing radiation, limited the use of imaging of the arterial vasculature for a long time. Noninvasive clinical examinations such as the “ankle brachial index” (ABI) can indicate the presence of PAOD, though exact localization of the pathologic changes is not possible except with imaging methods. In contrast to these, MRI is a noninvasive imaging modality that does not involve ionizing radiation but offers high spatial resolution arterial imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. Diehm C, Kareem S, Lawall H (2004) Epidemiology of peripheral arterial disease. Vasa 33: 183–189

    Article  PubMed  CAS  Google Scholar 

  2. Sans S, Kesteloot H, Kromhout D (1997) The burden of cardiovascular diseases mortality in Europe. Task Force of the European Society of Cardiology on Cardiovascular Mortality and Morbidity Statistics in Europe. Eur Heart J 18: 1231–1248

    Google Scholar 

  3. Meaney JF, Sheehy N (2005) MR angiography of the peripheral arteries. Magn Reson Imaging Clin North Am 13: 91–111, vi

    Article  Google Scholar 

  4. Rofsky NM, Adelman MA (2000) MR angiography in the evaluation of atherosclerotic peripheral vascular disease. Radiology 214: 325–338

    PubMed  CAS  Google Scholar 

  5. Ruehm SG et al. (2000) Pelvic and lower extremity arterial imaging: diagnostic performance of three-dimensional contrast-enhanced MR angiography. AJR Am J Roentgenol 174: 1127–1135

    PubMed  CAS  Google Scholar 

  6. Steffens JC et al. (2003) Bolus-chasing contrast-enhanced 3D MRA of the lower extremity. Comparison with intraarterial DSA. Acta Radiol 44: 185–192

    Article  PubMed  CAS  Google Scholar 

  7. Vogt MT, Wolfson SK, Kuller LH (1992) Lower extremity arterial disease and the aging process: a review. J Clin Epidemiol 45: 529–542

    Article  PubMed  CAS  Google Scholar 

  8. Alfakih K et al. (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17: 323–329

    Article  PubMed  Google Scholar 

  9. Huber A et al. (2003) Value of phase-sensitive inversion recovery for detection of myocardial infarction. In: Annual Meeting of the Radiological Society of North America. Chicago, Radiology (P)

  10. Jakob PM et al. (1999) Accelerated cardiac imaging using the SMASH technique. J Cardiovasc Magn Reson 1: 153–157

    PubMed  CAS  Google Scholar 

  11. Wintersperger BJ et al. (2003) Single breath-hold real-time cine MR imaging: improved temporal resolution using generalized autocalibrating partially parallel acquisition (GRAPPA) algorithm. Eur Radiol 13: 1931–1936

    Article  PubMed  Google Scholar 

  12. Hansen T et al. (2007) The prevalence and quantification of atherosclerosis in an elderly population assessed by whole-body magnetic resonance angiography. Arterioscler Thromb Vasc Biol 27: 649–654

    Article  PubMed  CAS  Google Scholar 

  13. Fenchel M et al. (2006) Atherosclerotic disease: whole-body cardiovascular imaging with MR system with 32 receiver channels and total-body surface coil technology – initial clinical results. Radiology 238: 280–291

    Article  PubMed  Google Scholar 

  14. Ghanem N et al. (2004) Whole-body MRI in comparison to skeletal scintigraphy for detection of skeletal metastases in patients with solid tumors. Radiologe 44: 864–873

    Article  PubMed  CAS  Google Scholar 

  15. Goehde SC et al. (2005) Full-body cardiovascular and tumor MRI for early detection of disease: feasibility and initial experience in 298 subjects. AJR Am J Roentgenol 184: 598–611

    PubMed  Google Scholar 

  16. Goyen M et al. (2004) MR-based full-body preventative cardiovascular and tumor imaging: technique and preliminary experience. Eur Radiol 14: 783–791

    Article  PubMed  Google Scholar 

  17. Herborn CU et al. (2004) Whole-body 3D MR angiography of patients with peripheral arterial occlusive disease. AJR Am J Roentgenol 182: 1427–1434

    PubMed  Google Scholar 

  18. Bammer R, Schoenberg SO (2004) Current concepts and advances in clinical parallel magnetic resonance imaging. Top Magn Reson Imaging 15: 129–158

    Article  PubMed  Google Scholar 

  19. Griswold MA et al. (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47: 1202–1210

    Article  PubMed  Google Scholar 

  20. Jakob PM et al. (1998) AUTO-SMASH: a self-calibrating technique for SMASH imaging. Simultaneous acquisition of spatial harmonics. Magma 7: 42–54

    Article  PubMed  CAS  Google Scholar 

  21. McKenzie CA et al. (2004) Shortening MR image acquisition time for volumetric interpolated breath-hold examination with a recently developed parallel imaging reconstruction technique: clinical feasibility. Radiology 230: 589–594

    Article  PubMed  Google Scholar 

  22. Kramer H et al. (2005) Cardiovascular screening with parallel imaging techniques and a whole-body MR imaging. Radiology 236: 300–310

    Article  PubMed  Google Scholar 

  23. Greenland P et al. (2004) Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291: 210–215

    Article  PubMed  CAS  Google Scholar 

  24. Alfakih K et al. (2004) A comparison of left ventricular mass between two-dimensional echocardiography, using fundamental and tissue harmonic imaging, and cardiac MRI in patients with hypertension. Eur J Radiol 52: 103–109

    Article  PubMed  Google Scholar 

  25. Atalay MK (2006) Evaluation of the cardiac surgery patient by MRI and CT imaging: the state of the art. Med Health R I 89: 14–19

    PubMed  Google Scholar 

  26. Huber A et al. (2006) Phase-sensitive inversion recovery (PSIR) single-shot TrueFISP for assessment of myocardial infarction at 3 tesla. Invest Radiol 41: 148–153

    Article  PubMed  Google Scholar 

  27. Wintersperger BJ et al. (2006) Cardiac steady-state free precession CINE magnetic resonance imaging at 3.0 tesla: impact of parallel imaging acceleration on volumetric accuracy and signal parameters. Invest Radiol 41: 141–147

    Article  PubMed  Google Scholar 

  28. Wintersperger BJ et al. (2006) Cardiac CINE MR imaging with a 32-channel cardiac coil and parallel imaging: impact of acceleration factors on image quality and volumetric accuracy. J Magn Reson Imaging 23: 222–227

    Article  PubMed  Google Scholar 

  29. Miller S et al. (2002) MR Imaging of the heart with cine true fast imaging with steady-state precession: influence of spatial and temporal resolutions on left ventricular functional parameters. Radiology 223: 263–269

    Article  PubMed  Google Scholar 

  30. Wintersperger BJ et al. (2007) Dual breath-hold magnetic resonance cine evaluation of global and regional cardiac function. Eur Radiol 17: 73–80

    Article  PubMed  Google Scholar 

  31. Beache GM et al. (1998) Imaging perfusion deficits in ischemic heart disease with susceptibility-enhanced T2-weighted MRI: preliminary human studies. Magn Reson Imaging 16: 19–27

    Article  PubMed  CAS  Google Scholar 

  32. Muehling O et al. (2006) Assessment of collateralized myocardium with cardiac magnetic resonance (CMR): transmural extent of infarction but not angiographic collateral vessel filling determines regional function and perfusion in collateral-dependent myocardium. Int J Cardiol 120: 38–44

    Article  PubMed  Google Scholar 

  33. Muehling OM et al. (2007) The delay of contrast arrival in magnetic resonance first-pass perfusion imaging: a novel non-invasive parameter detecting collateral-dependent myocardium. Heart 93: 842–847

    Article  PubMed  CAS  Google Scholar 

  34. Rieber J et al. (2006) Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. Eur Heart J 27: 1465–1471

    Article  PubMed  Google Scholar 

  35. Sechtem U et al. (1999) Stress functional MRI: detection of ischemic heart disease and myocardial viability. J Magn Reson Imaging 10: 667–675

    Article  PubMed  CAS  Google Scholar 

  36. Huber A et al. (2006) Single-shot inversion recovery TrueFISP for assessment of myocardial infarction. AJR Am J Roentgenol 186: 627–633

    Article  PubMed  Google Scholar 

  37. Glover JL et al. (1984) Duplex ultrasonography, digital subtraction angiography, and conventional angiography in assessing carotid atherosclerosis. Arch Surg 119: 664–669

    PubMed  CAS  Google Scholar 

  38. Heuschmid M et al. (2003) Assessment of peripheral arterial occlusive disease: comparison of multislice-CT angiography (MS-CTA) and intraarterial digital subtraction angiography (IA-DSA). Eur J Med Res 8: 389–396

    PubMed  Google Scholar 

  39. Kreitner KF et al. (2000) Diabetes and peripheral arterial occlusive disease: prospective comparison of contrast-enhanced three-dimensional MR angiography with conventional digital subtraction angiography. AJR Am J Roentgenol 174: 171–179

    PubMed  CAS  Google Scholar 

  40. Prokop M (2000) Multislice CT angiography. Eur J Radiol 36: 86–96

    Article  PubMed  CAS  Google Scholar 

  41. Rubin GD (1997) Helical CT angiography of the thoracic aorta. J Thorac Imaging 12: 128–149

    Article  PubMed  CAS  Google Scholar 

  42. Vasbinder GBC, de Haan MW, van Engelshoven JMA (2002) Accuracy of CTA and 3D contrast-enhanced MRA as compared to intra-arterial digital subtraction angiography for assessment of the number of renal arteries in 356 subjects. Radiology 225 (Proceedings): 400

    Article  Google Scholar 

  43. Kramer H et al. (2007) High-resolution magnetic resonance angiography of the lower extremities with a dedicated 36-element matrix coil at 3 tesla. Invest Radiol 42: 477–483

    Article  PubMed  Google Scholar 

  44. Michaely HJ et al. (2006) High-resolution renal MRA: comparison of image quality and vessel depiction with different parallel imaging acceleration factors. J Magn Reson Imaging 24: 95–100

    Article  PubMed  Google Scholar 

  45. Nikolaou K et al. (2006) High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology 241: 861–872

    Article  PubMed  Google Scholar 

  46. Goyen M et al. (2003) Detection of atherosclerosis: systemic imaging for systemic disease with whole-body three-dimensional MR angiography – initial experience. Radiology 227: 277–282

    Article  PubMed  Google Scholar 

  47. Goyen M et al. (2992) Whole-body three-dimensional MR angiography with a rolling table platform: initial clinical experience. Radiology 224: 270–277

    Article  Google Scholar 

  48. Ruehm SG, Goehde SC, Goyen M (2004) Whole body MR angiography screening. Int J Cardiovasc Imaging 20: 587–591

    Article  PubMed  Google Scholar 

  49. Ruehm SG et al. (2001) Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 357(9262): 1086–1091

    Article  PubMed  CAS  Google Scholar 

  50. Ruehm SG et al. (2000) Whole-body MRA on a rolling table platform (AngioSURF). Rofo 172: 670–674

    PubMed  CAS  Google Scholar 

  51. Fenchel M et al. (2006) Cardiovascular whole-body MR imaging in patients with symptomatic peripheral arterial occlusive disease. Rofo 178: 491–499

    PubMed  CAS  Google Scholar 

  52. Weckbach S (2006) Comprehensive diabetes imaging with whole body MR imaging at 1.5 and 3.0 T in patients with longstanding diabetes. In: ECR 2006, Vienna

  53. Born M et al. (2005) Sensitivity encoding (SENSE) for contrast-enhanced 3D MR angiography of the abdominal arteries. J Magn Reson Imaging 22: 559–565

    Article  PubMed  Google Scholar 

  54. Thomsen HS, Morcos SK, Dawson P (2006) Is there a causal relation between the administration of gadolinium based contrast media and the development of nephrogenic systemic fibrosis (NSF)? Clin Radiol 61: 905–906

    Article  PubMed  CAS  Google Scholar 

  55. Klessen C et al. (2006) Whole-body MR angiography: comparison of two protocols for contrast media injection. Rofo 178: 484–490

    PubMed  CAS  Google Scholar 

  56. Michaely HJ, Thomsen HS et al. (2007) Nephrogene systemische Fibrose (NSF) – Implikationen für die Radiologie. Radiologe 47: 785–793

    Article  PubMed  CAS  Google Scholar 

  57. Nael K, Ruehm SG, Michaely et al. (2007) Multistation whole-body high spatial resolution MR angiography using a 32-channel MR system. AJR 188: 529–539

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt ab, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kramer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, H., Weckbach, S., van Kaick, G. et al. Screening bei Herz- und Gefäßkrankheiten. Radiologe 48, 52–62 (2008). https://doi.org/10.1007/s00117-007-1607-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-007-1607-4

Schlüsselwörter

Keywords

Navigation