Skip to main content
Log in

Ultraschallkontrastmittel

Arzneimittelsicherheit und Bioeffekte

Ultrasound contrast agents

Pharmaceutical drug safety and bioeffects

  • Leitthema: Kontrastmittelsicherheit
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

In dieser Arbeit werden die Sicherheitsaspekte von Ultraschallkontrastmitteln (USKM) aufgezeigt und diskutiert.

USKM sind generell sehr sichere Arzneimittel. Insbesondere aufgrund der kolloidalen Struktur muss jedoch auch hier mit allergoiden Reaktionen gerechnet werden. Daneben wird durch die Applikation von USKM die Schwelle für das Auftreten akustisch induzierter Bioeffekte herabgesetzt und diese möglicherweise verstärkt. In vitro und im Rahmen von Tierversuchen konnten durch USKM und Ultraschall petechiale Blutungen, vaskuläre Schäden und die Bildung freier Radikale bis hin zu Schädigungen von DNA-Einzelsträngen nachgewiesen werden. Klinisch stehen diesen Untersuchungen jedoch keine entsprechenden Resultate gegenüber. Selten wurde bei kardiologischen Untersuchungen eine erhöhte Rate an ventrikulären Kontraktionen bei kontrastverstärkter Sonographie mit Triggerung auf die Endsystole beobachtet. Nephrotoxische Effekte, wie bei anderen Kontrastmitteln, wurden keine gefunden, sodass der kontrastmittelverstärkte Ultraschall als wichtige Untersuchungsalternative bei Patienten mit eingeschränkter Niereninsuffizienz anzusehen ist.

Abstract

In this overview safety aspects of ultrasound contrast agents (USCA) are described and discussed. In general USCA are very safe drugs. However, allergic adverse reactions can rarely occur, particularly due to the colloidal structure of USCA. In addition, the use of USCA could reduce the threshold for acoustically induced bioeffects and has the potential to increase these effects. In in vitro studies and animal trials USCA caused petechial hemorrhages, vascular damage, and the formation of free radicals. Even DNA damage with single strand breaks could be demonstrated. In human studies and clinical practice none of these bioeffects could be observed. In contrast-enhanced echocardiography a higher rate of premature ventricular contractions has been reported when imaging was triggered at the end systole. Compared with other contrast agents contrast-enhanced ultrasound showed no nephrotoxic effects and could prove to be an alternative diagnostic method for patients with renal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Albrecht T, Hohmann J (2003) Ultrasound contrast agents. Radiologe 43: 793–804

    Article  PubMed  CAS  Google Scholar 

  2. Amon U (1997) Pathophysiologische und immunologische Mechanismen kontrastmittelinduzierter anaphylaktoider Sofortreaktionen – eine Übersicht. Akt Radiol 7: 145–148

    CAS  Google Scholar 

  3. Apfel RE, Holland CK (1991) Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med Biol 17: 179–185

    Article  PubMed  CAS  Google Scholar 

  4. Barnett SB, Duck F, Ziskin M (2007) Recommendations on the safe use of ultrasound contrast agents. Ultrasound Med Biol 33: 173–174

    Article  PubMed  Google Scholar 

  5. Barnett SB, Duck F, Ziskin M (2007) WFUMB symposium on safety of ultrasound in medicine: conclusions and recommendations on biological effects and safety of ultrasound contrast agents. Ultrasound Med Biol 33: 233–234

    Article  PubMed  Google Scholar 

  6. Becher H (2002) Contrast echocardiography: clinical applications and future prospects. Herz 27: 201–216

    Article  PubMed  Google Scholar 

  7. Behm CZ, Lindner JR (2006) Cellular and molecular imaging with targeted contrast ultrasound. Ultrasound Q 22: 67–72

    PubMed  Google Scholar 

  8. Bekeredjian R, Grayburn, PA, Shohet RV (2005) Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol 45: 329–335

    Article  PubMed  CAS  Google Scholar 

  9. Birnbaum Y, Luo H, Nagai T et al. (1998) Noninvasive in vivo clot dissolution without a thrombolytic drug: recanalization of thrombosed iliofemoral arteries by transcutaneous ultrasound combined with intravenous infusion of microbubbles. Circulation 97: 130–134

    PubMed  CAS  Google Scholar 

  10. Blomley M, Albrecht T, Cosgrove DO et al. (1998) Stimulated acoustic emission in the liver parenchyma with ultrasound contrast agent levovist. Lancet 351: 568

    Article  PubMed  CAS  Google Scholar 

  11. Borges AC, Walde T, Reibis RK et al. (2002) Does contrast echocardiography with optison induce myocardial necrosis in humans? J Am Soc Echocardiogr 15: 1080–1086

    Article  PubMed  Google Scholar 

  12. Bouakaz A, de Jong N (2007) WFUMB safety symposium on echo-contrast agents: nature and types of ultrasound contrast agents. Ultrasound Med Biol 33: 187–196

    Article  PubMed  Google Scholar 

  13. Correas JM, Bridal L, Lesavre A et al. (2001) Ultrasound contrast agents: properties, principles of action, tolerance, and artefacts. Eur Radiol 11: 1316–1328

    Article  PubMed  CAS  Google Scholar 

  14. Correas JM, Claudon M, Tranquart F, Helenon O (2003) Contrast-enhanced ultrasonography: renal applications. J Radiol 84: 2041–2054

    PubMed  CAS  Google Scholar 

  15. Dalecki D, Keller BB, Carstensen EL et al. (1991) Thresholds for premature ventricular contractions in frog hearts exposed to lithotripter fields. Ultrasound Med Biol 17: 341–346

    Article  PubMed  CAS  Google Scholar 

  16. Dalecki D, Raeman CH, Child SZ et al. (1997) Hemolysis in vivo from exposure to pulsed ultrasound. Ultrasound Med Biol 23: 307–313

    Article  PubMed  CAS  Google Scholar 

  17. Dalecki D (2007) WFUMB safety symposium on echo-contrast agents: bioeffects of ultrasound contrast agents in vivo. Ultrasound Med Biol 33: 205–213

    Article  PubMed  Google Scholar 

  18. Dayton PA, Lindner JR, Chomas JE et al. (1999) Ultrasound contrast agents phagocytosed by neutrophils demonstrate acoustic activity. In: Schneider SC, Levy M, McAvoy Br (eds) 1999 IEEE Ultrasonics Symposium Proceedings. Institue of Electrical and Electonic Engeneers, New York, pp 1705–1708

  19. Debus J, Spoo J, Jenne J et al. (1999) Sonochemical induced radicals generated by pulsed high-energy ultrasound in vitro and in vivo. Ultrasound Med Biol 25: 301–306

    Article  PubMed  CAS  Google Scholar 

  20. Delorme S, Krix M, Albrecht T (2006) Ultrasound contrast media – principles and clinical applications. Rofo 178: 155–164

    PubMed  CAS  Google Scholar 

  21. Everbach EC, Makin IR, Azadniv M, Meltzer RS (1997) Correlation of ultrasound-induced hemolysis with cavitation detector output in vitro. Ultrasound Med Biol 23: 619–624

    Article  PubMed  CAS  Google Scholar 

  22. Everbach EC, Makin IR, Francis CW, Meltzer RS (1998) Effect of acoustic cavitation on platelets in the presence of an echo-contrast agent. Ultrasound Med Biol 24: 129–136

    Article  PubMed  CAS  Google Scholar 

  23. Frauscher F, Klauser A, Berger AP et al. (2003) The value of ultrasound (US) in the diagnosis of prostate cancer. Radiologe 43: 455–463

    Article  PubMed  CAS  Google Scholar 

  24. Goertz DE, de Jong N, van der Steen AF (2007) Attenuation and size distribution of definity© and manipulated definity© populations. Ultrasound Med Biol: Epub ahead of print

    Google Scholar 

  25. Greis CH, Dietrich CF (2005) Ultraschallkontrastmittel und signalverstärkende Sonographie. In: Dietrich CF (Hrsg) Endoskopischer Ultraschall – Eine Einführung. Schnetztor, Konstanz, S 324–346

  26. Honda H, Zhao QL, Kondo T (2002) Effects of dissolved gases and an echo contrast agent on apoptosis induced by ultrasound and its mechanism via the mitochondria-caspase pathway. Ultrasound Med Biol 28: 673–682

    Article  PubMed  Google Scholar 

  27. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220: 640–646

    Article  PubMed  CAS  Google Scholar 

  28. Jakobsen J, Oyen R, Thomsen HS, Morcos SK (2005) Safety of ultrasound contrast agents. Eur Radiol 15: 941–945

    Article  PubMed  Google Scholar 

  29. Jenne J (2001) Kavitation in biologischem Gewebe. Ultraschall Med 22: 200–207

    Article  PubMed  CAS  Google Scholar 

  30. Jenne JW, Martin-Villalba A, Flechsig P et al. (2007) Reversible opening of the BBB with focused ultrasound and SonoVue In: NN (eds) Therapeutic ultrasound. 7th international Symposium on Therapeutic Ultrasound. American Institute of Physics, Melville, New York

  31. Kirchin MA, Runge VM (2003) Contrast agents for magnetic resonance imaging: safety update. Top Magn Reson Imaging 14: 426–435

    Article  PubMed  Google Scholar 

  32. Klauser A, Frauscher F, Schirmer M et al. (2002) The value of contrast-enhanced color Doppler ultrasound in the detection of vascularization of finger joints in patients with rheumatoid arthritis. Arthritis Rheum 46: 647–653

    Article  PubMed  Google Scholar 

  33. Kobayashi N, Yasu T, Yamada S et al. (2002) Endothelial cell injury in venule and capillary induced by contrast ultrasonography. Ultrasound Med Biol 28: 949–956

    Article  PubMed  Google Scholar 

  34. Koch S, Pohl P, Cobet U, Rainov NG (2000) Ultrasound enhancement of liposome-mediated cell transfection is caused by cavitation effects. Ultrasound Med Biol 26: 897–903

    Article  PubMed  CAS  Google Scholar 

  35. Korosoglou G, da Silva KG, Hansen A et al. (2004) Ultrasound contrast agents can influence the respiratory burst activity of human neutrophil granulocytes. Ultrasound Med Biol 30: 75–81

    Article  PubMed  Google Scholar 

  36. Krix M, Weber MA, Krakowski-Roosen H et al. (2005) Assessment of skeletal muscle perfusion using contrast-enhanced ultrasonography. J Ultrasound Med 24: 431–441

    PubMed  Google Scholar 

  37. Kudo N, Miyaoka T, Okada K et al. (2002) Study on mechanism of cell damage caused by microbubbles exposed to ultrasound. Proc. IEEE Ultrasonics Symposium 1351–1354; ISBN No. 0-7803-7583-1

  38. Li P, Cao LQ, Dou CY et al. (2003) Impact of myocardial contrast echocardiography on vascular permeability: an in vivo dose response study of delivery mode, pressure amplitude and contrast dose. Ultrasound Med Biol 29: 1341–1349

    Article  PubMed  Google Scholar 

  39. Lindner JR, Coggins MP, Kaul S et al. (2000) Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin – and complement-mediated adherence to activated leukocytes. Circulation 101: 668–675

    PubMed  CAS  Google Scholar 

  40. Lindner JR, Song J, Jayaweera AR et al. (2002) Microvascular rheology of definity microbubbles after intra-arterial and intravenous administration. J Am Soc Echocardiogr 15: 396–403

    Article  PubMed  Google Scholar 

  41. Maurer M, Linker R, Reinhardt M, Hauff P (2005) Possible target specific molecular imaging with ultrasound contrast agents. Radiologe 45: 560–568

    Article  PubMed  CAS  Google Scholar 

  42. Miller DL, Thomas RM, Buschborn RL (1995) Comet assay reveals DNA strand breaks induced by ultrasonic cavitation in vivo. Ultrasound Med Biol 21: 841–848

    Article  PubMed  CAS  Google Scholar 

  43. Miller DL, Thomas RM (1995) Ultrasound contrast agents nucleate inertial cavitation in vitro. Ultrasound Med Biol 21: 1059–1065

    Article  PubMed  CAS  Google Scholar 

  44. Miller DL, Gies RA (1998) Gas-body-based contrast agent enhances vascular bioeffects of 1.09 MHz ultrasound on mouse intestine. Ultrasound Med Biol 24: 1201–1208

    Article  PubMed  CAS  Google Scholar 

  45. Miller DL (2007) WFUMB safety symposium on echo-contrast agents: in vitro bioeffects. Ultrasound Med Biol 33: 197–204

    Article  PubMed  Google Scholar 

  46. Molina CA, Ribo M, Rubiera M et al. (2006) Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 37: 425–429

    Article  PubMed  CAS  Google Scholar 

  47. Morcos SK, Thomsen HS (2001) Adverse reactions to iodinated contrast media. Eur Radiol 11: 1267–1275

    Article  PubMed  CAS  Google Scholar 

  48. Ostensen J, Hede R, Myreng Y et al. (1992) Intravenous injection of Albunex microspheres causes thromboxane mediated pulmonary hypertension in pigs, but not in monkeys or rabbits. Acta Physiol Scand 144: 307–315

    Article  PubMed  CAS  Google Scholar 

  49. Piscaglia F, Bolondi L (2006) Italian Society for Ultrasound in Medicine and Biology (SIUMB) Study Group on Ultrasound Contrast Agents. The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med Biol 32: 1369–1375

    Article  PubMed  Google Scholar 

  50. Raeman CH, Dalecki D, Child SZ et al. (1997) Albunex does not increase the sensitivity of the lung to pulsed ultrasound. Echocardiography 14: 553–558

    PubMed  Google Scholar 

  51. Rosenfeld E (2003) Nicht-thermische, nicht kavitative Wirkungen von Ultraschall. Ultraschall Med 24: 40–44

    Article  PubMed  CAS  Google Scholar 

  52. Schlachetzki F, Holscher T, Koch HJ et al. (2002) Observation on the integrity of the blood-brain barrier after microbubble destruction by diagnostic transcranial color-coded sonography. J Ultrasound Med 21: 419–429

    PubMed  Google Scholar 

  53. Sieswerda GT, Kamp O, Visser CA (2000) Myocardial contrast echocardiography: clinical benefit and practical issues. Echocardiography 17: 25–36

    Google Scholar 

  54. Skyba DM, Price RJ, Linka AZ et al. (1998) Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation 98: 290–293

    PubMed  CAS  Google Scholar 

  55. Sokka SD, King R, Hynynen K (2003) MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh. Phys Med Biol 48: 223–241

    Article  PubMed  CAS  Google Scholar 

  56. Suslick KS, Kemper KA (1993) The Effect of fluorocarbon gases on sonoluminescence: a failure of the electrical hypothesis. Ultrasonics 31: 463–465

    Article  CAS  Google Scholar 

  57. Tran TA, Roger S, Le Guennec JY et al. (2007) Effect of ultrasound-activated microbubbles on the cell electrophysiological properties. Ultrasound Med Biol 33: 158–163

    Article  PubMed  CAS  Google Scholar 

  58. Van der Wouw PA, Brauns AC, Bailey SE et al. (2000) Premature ventricular contractions during triggered imaging with ultrasound contrast. J Am Soc Echocardiogr 13: 288–294

    Article  Google Scholar 

  59. Wible JH jr, Galen KP, Wojdyla JK et al. (2002) Microbubbles induce renal hemorrhage when exposed to diagnostic ultrasound in anesthetized rats. Ultrasound Med Biol 28: 1535–1546

    Article  PubMed  Google Scholar 

  60. Wiesmann M, Meyer K, Albers T, Seidel G (2004) Parametric perfusion imaging with contrast-enhanced ultrasound in acute ischemic stroke. Stroke 35: 508–513

    Article  PubMed  Google Scholar 

  61. Williams AR, Wiggins RC, Wharram BL et al. (2007) Nephron injury induced by diagnostic ultrasound imaging at high mechanical index with gas body contrast agent, Ultrasound Med Biol: Epub ahead of print

  62. Wu J (1998) Temperatur rise generated by ultrasound in the presence of contrast agents. Ultrasound Med Biol 24: 267–274

    Article  PubMed  CAS  Google Scholar 

  63. Xie F, Tsutsui JM, Gao L et al. (2007) Interaction of transthoracic ultrasound and intravenous microbubbles with cardiac mechanoreceptors. Ultrasound Med Biol 33: 136–144

    Article  PubMed  Google Scholar 

  64. Yu T, Wang G, Hu K et al. (2004) A microbubble agent improves the therapeutic efficiency of high intensity focused ultrasound: a rabbit kidney study. Urol Res 32: 14–19

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

M. Krix ist in der klinischen Forschung der Firma Bracco ALTANA beschäftigt, welche das USKM SonoVue in Deutschland vertreibt. Die Präsentation des Themas ist jedoch davon unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Krix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krix, M., Jenne, J. Ultraschallkontrastmittel. Radiologe 47, 800–807 (2007). https://doi.org/10.1007/s00117-007-1544-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-007-1544-2

Schlüsselwörter

Keywords

Navigation