Skip to main content
Log in

Möglichkeiten Target-spezifischer molekularer Bildgebung mit Ultraschallkontrastmitteln

Possible target specific molecular imaging with ultrasound contrast agents

  • Ultraschall-Kontrastmittel
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

In der modernen Medizin besteht ein zunehmendes Interesse an der Abbildung zellulärer und molekularer Vorgänge. Aktuell werden bereits verschiedene bildgebende Verfahren mit dem Ziel einer molekularen Bildgebung in der biomedizinischen Forschung getestet. Neben radionuklidgestützten Methoden gewinnt hierbei die Sonographie an zunehmender Bedeutung. Dies wird insbesondere durch die Entwicklung neuer, zielgerichteter (Target-spezifischer) Kontrastmittel und verbesserter Messverfahren ermöglicht. Target-spezifische Ultraschallkontrastmittel (USKM) lassen sich selbst in kleinsten Mengen anhand eines charakteristischen Signals im Gewebe detektieren. In verschiedenen Untersuchungen mit spezifischen USKM konnte bereits die generelle Machbarkeit molekularer sonographischer Bildgebung gezeigt werden. Diese Übersichtsarbeit beschreibt verschiedene Einsatzmöglichkeiten Target-spezifischer USKM und fasst erste Erfahrungen aus ihrer präklinischen Anwendung zusammen.

Abstract

Non-invasive molecular imaging technologies provide researchers with the opportunity to study cellular and molecular processes. Among different imaging technologies, ultrasound based molecular imaging methods are also of interest, since the use of ultrasound contrast agents allows specific and sensitive depiction of molecular targets. Recent studies are encouraging and have demonstrated the feasibility of ultrasound based molecular imaging. This review summarizes current experiences and recent preclinical studies with target-specific ultrasound contrast agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Constantinescu E, Alexandru D, Alexandru V et al. (2000) Endothelial cell-derived foam cells fail to express adhesion molecules (ICAM-1 and VCAM-1) for monocytes. J Submicrosc Cytol Pathol 32:195–201

    CAS  PubMed  Google Scholar 

  2. Ellegala DB, Leong-Poi H, Carpenter JE et al. (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation 108:336–341

    Article  PubMed  Google Scholar 

  3. Engelhardt B (1998) The role of alpha 4-integrin in T lymphocyte migration into the inflamed and noninflamed central nervous system. Curr Top Microbiol Immunol 231:51–64

    CAS  PubMed  Google Scholar 

  4. Engelhardt B, Vestweber D, Hallmann R, Schulz M (1997) E- and P-selectin are not involved in the recruitment of inflammatory cells across the blood-brain barrier in experimental autoimmune encephalomyelitis. Blood 90:4459–4472

    CAS  PubMed  Google Scholar 

  5. Fox RJ, Ransohoff RM (2004) New directions in MS therapeutics: vehicles of hope. Trends Immunol 25:632–636

    Article  CAS  PubMed  Google Scholar 

  6. Hauff P, Fritzsch T, Reinhardt M et al. (1997) Delineation of experimental liver tumors in rabbits by a new ultrasound contrast agent and stimulated acoustic emission. Invest Radiol 32:94–99

    Article  CAS  PubMed  Google Scholar 

  7. Hauff P, Reinhardt M, Briel A et al. (2004) Molecular targeting of lymph nodes with L-selectin ligand-specific US contrast agent: a feasibility study in mice and dogs. Radiology 231:667–673

    PubMed  Google Scholar 

  8. Krix M, Plathow C, Essig M et al. (2005) Monitoring of liver metastases after stereotactic radiotherapy using low-MI contrast-enhanced ultrasound-initial results. Eur Radiol (in press)

  9. Laschinger M, Engelhardt B (2000) Interaction of alpha4-integrin with VCAM-1 is involved in adhesion of encephalitogenic T cell blasts to brain endothelium but not in their transendothelial migration in vitro. J Neuroimmunol 102:32–43

    Article  CAS  PubMed  Google Scholar 

  10. Laschinger M, Vajkoczy P, Engelhardt B (2002) Encephalitogenic T cells use LFA-1 for transendothelial migration but not during capture and initial adhesion strengthening in healthy spinal cord microvessels in vivo. Eur J Immunol 32:3598–3606

    Article  CAS  PubMed  Google Scholar 

  11. Lee SJ, Benveniste EN (1999) Adhesion molecule expression and regulation on cells of the central nervous system. J Neuroimmunol 98:77–88

    Article  CAS  PubMed  Google Scholar 

  12. Leong-Poi H, Christiansen J, Klibanov AL et al. (2003) Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation 107:455–460

    Article  CAS  PubMed  Google Scholar 

  13. Lindner JR (2004) Molecular imaging with contrast ultrasound and targeted microbubbles. J Nucl Cardiol 11:215–221

    Article  PubMed  Google Scholar 

  14. Lindner JR, Coggins MP, Kaul S et al. (2000) Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complement-mediated adherence to activated leukocytes. Circulation 101:668–675

    CAS  PubMed  Google Scholar 

  15. Lindner JR, Song J, Christiansen J et al. (2001) Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 104:2107–2112

    CAS  PubMed  Google Scholar 

  16. Mäurer M, Linker RA, Hauff P et al. (2003) Imaging of ICAM-1 in expeimetnal autoimmune encephalomyelitis (EAE) with a specific ultrasound contrast agent. Neurology 60:A423

    Google Scholar 

  17. Reinhardt M, Hauff P, Briel A et al. (2005) Sensitive particle acoustic quantification (SPAQ): a new ultrasound-based approach for the quantification of ultrasound contrast media in high concentrations. Invest Radiol 40:2–7

    CAS  PubMed  Google Scholar 

  18. Schirner M, Menrad A, Stephens A et al. (2004) Molecular imaging of tumor angiogenesis. Ann NY Acad Sci 1014:67–75

    Article  CAS  PubMed  Google Scholar 

  19. Seemann S, Hauff P, Schultze-Mosgau M et al. (2002) Pharmaceutical evaluation of gas-filled microparticles as gene delivery system. Pharm Res 19:250–257

    Article  CAS  PubMed  Google Scholar 

  20. Villanueva FS, Jankowski RJ, Klibanov S et al. (1998) Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation 98:1–5

    CAS  PubMed  Google Scholar 

  21. Weller GE, Lu E, Csikari MM, Klibanov AL et al. (2003) Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1. Circulation 108:218–224

    Article  PubMed  Google Scholar 

  22. Westermann J, Engelhardt B, Hoffmann JC (2001) Migration of T cells in vivo: molecular mechanisms and clinical implications. Ann Intern Med 135:279–295

    CAS  PubMed  Google Scholar 

  23. Wiendl H, Kieseier BC (2003) Disease-modifying therapies in multiple sclerosis: an update on recent and ongoing trials and future strategies. Expert Opin Investig Drugs 12:689–712

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor weist auf eine Verbindung mit folgender Firma/Firmen hin: M. Reinhardt und P. Hauff sind Mitarbeiter der Schering-AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mäurer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mäurer, M., Linker, R., Reinhardt, M. et al. Möglichkeiten Target-spezifischer molekularer Bildgebung mit Ultraschallkontrastmitteln. Radiologe 45, 560–568 (2005). https://doi.org/10.1007/s00117-005-1215-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-005-1215-0

Schlüsselwörter

Keywords

Navigation