Skip to main content
Log in

Zellersatz und adulte Neurogenese beim idiopathischen Parkinson-Syndrom

Cellular replacement strategies and adult neurogenesis in idiopathic Parkinson’s disease

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Progrediente neurodegenerative Prozesse führen zu einem Neuronenverlust beim idiopathischen Parkinson-Syndrom (IPS), der häufigsten altersassoziierten Bewegungsstörung. Die für die motorische Symptomatik des IPS verantwortliche Degeneration dopaminerger Neurone der Substantia nigra macht den Ersatz dieser Nervenzellen durch Transplantation sehr attraktiv. Aktuelle Entwicklungen der Stammzelltechnologie ermöglichen eine Optimierung des Transplantats und können zu einer Reaktivierung dieser Therapiestrategie führen. Zusätzlich gehen die neurodegenerativen Prozesse des IPS mit einer gestörten adulten Nervenzellneubildung (Neurogenese) und damit einer Beeinträchtigung der hirneigenen zellulären Plastizität einher. Nichtmotorische Symptome können daher nicht ausschließlich durch neurodegenerative Prozesse, sondern auch im Rahmen einer gestörten adulten Neurogenese erklärbar sein. Die Kombination aus Neurodegeneration und konsekutiv gestörter adulter Neurogenese könnte so beim IPS zu einer erhöhten Vulnerabilität des limbischen und des olfaktorischen Systems führen.

Abstract

Parkinson’s disease (PD) is the most common age-related movement disorder and characterized by slowly progressive neurodegeneration resulting in motor symptoms, such as bradykinesia, rigidity, tremor and postural instability. Moreover, non-motor symptoms, such as hyposmia, anxiety and depression reduce the quality of life in PD. Motor symptoms are associated with a distinct striatal dopaminergic deficit resulting from axonal dysfunction and neuronal loss in the substantia nigra (SN). Recent progress in stem cell technology allows the optimization of cellular transplantation strategies in order to alleviate the motor deficit, which potentially leads to a reactivation of this therapeutic strategy. Besides neurodegenerative processes impaired adult neurogenesis and consequentially reduced endogenous cellular plasticity may play an important role in PD. This article discusses the notion that non-motor symptoms in PD may partly be explained by reduced adult neurogenesis in the olfactory bulb and hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Baker SA, Baker KA, Hagg T (2004) Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci 20:575–579. doi:10.1111/j.1460-9568.2004.03486.x

    Article  PubMed  Google Scholar 

  2. Barone P, Antonini A, Colosimo C et al (2009) The PRIAMO study: A multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord 24:1641–1649. doi:10.1002/mds.22643

    Article  PubMed  Google Scholar 

  3. Bartels T, Choi JG, Selkoe DJ (2011) α‑Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477:107–110. doi:10.1038/nature10324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Biebl M, Cooper CM, Winkler J, Kuhn HG (2000) Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett 291:17–20

    Article  CAS  PubMed  Google Scholar 

  5. Blum R, Lesch K‑P (2015) Parkinson’s disease, anxious depression and serotonin-zooming in on hippocampal neurogenesis. J Neurochem 135:441–444. doi:10.1111/jnc.13278

    Article  CAS  PubMed  Google Scholar 

  6. Braak E, Braak H (1999) Silver staining method for demonstrating Lewy bodies in Parkinson’s disease and argyrophilic oligodendrocytes in multiple system atrophy. J Neurosci Methods 87:111–115

    Article  CAS  PubMed  Google Scholar 

  7. Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  8. Braak H, Rüb U, Del Tredici K (2006) Cognitive decline correlates with neuropathological stage in Parkinson’s disease. J Neurol Sci 248:255–258. doi:10.1016/j.jns.2006.05.011

    Article  PubMed  Google Scholar 

  9. Braak H, Rüb U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm (Vienna) 110(5):517–536. doi:10.1007/s00702-002-0808-2

  10. Curtis MA (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249. doi:10.1126/science.1136281

    Article  CAS  PubMed  Google Scholar 

  11. Danzer KM, Haasen D, Karow AR et al (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27:9220–9232. doi:10.1523/JNEUROSCI.2617-07.2007

    Article  CAS  PubMed  Google Scholar 

  12. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350. doi:10.1038/nrn2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Desplats P, Lee H‑J, Bae E‑J et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A 106:13010–13015. doi:10.1073/pnas.0903691106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deusser J, Schmidt S, Ettle B et al (2015) Serotonergic dysfunction in the A53 T alpha-synuclein mouse model of Parkinson’s disease. J Neurochem 135:589–597. doi:10.1111/jnc.13253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Doetsch F, García-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    CAS  PubMed  Google Scholar 

  16. Eriksson PS, Perfilieva E, Björk-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317. doi:10.1038/3305

    Article  CAS  PubMed  Google Scholar 

  17. Ernst A, Frisén J (2015) Adult neurogenesis in humans- common and unique traits in mammals. PLoS Biol 13:e1002045. doi:10.1371/journal.pbio.1002045

    Article  PubMed  PubMed Central  Google Scholar 

  18. Freed CR, Greene PE, Breeze RE et al (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344:710–719. doi:10.1056/NEJM200103083441002

    Article  CAS  PubMed  Google Scholar 

  19. Freudenberg U, Hermann A, Welzel PB et al (2009) A star-PEG–heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 30:5049–5060. doi:10.1016/j.biomaterials.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  20. Freundlieb N, François C, Tandé D et al (2006) Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged primates. J Neurosci 26:2321–2325. doi:10.1523/JNEUROSCI.4859-05.2006

    Article  CAS  PubMed  Google Scholar 

  21. Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatr 51(6):745–752. doi:10.1136/jnnp.51.6.745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grealish S, Diguet E, Kirkeby A et al (2014) Human ESC-derived dopamine neurons show similar Preclinical efficacy and potency to fetal neurons when grafted in a rat model of parkinson’s disease. Stem Cell 15:653–665. doi:10.1016/j.stem.2014.09.017

    CAS  Google Scholar 

  23. Gross RE, Watts RL, Hauser RA et al (2011) Intrastriatal transplantation of microcarrier-bound human retinal pigment epithelial cells versus sham surgery in patients with advanced Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 10:509–519. doi:10.1016/S1474-4422[11]70097-7

    Article  PubMed  Google Scholar 

  24. Hagell P, Piccini P, Björklund A et al (2002) Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci 5:627–628. doi:10.1038/nn863

    CAS  PubMed  Google Scholar 

  25. Hermann A, Storch A, Liebau S (2013) Possible applications of new stem cell sources in neurology. Nervenarzt 84:943–948. doi:10.1007/s00115-013-3753-4

    Article  CAS  PubMed  Google Scholar 

  26. Höglinger GU, Rizk P, Muriel MP et al (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735. doi:10.1038/nn1265

    Article  PubMed  Google Scholar 

  27. Huisman E, Uylings HBM, Hoogland PV (2004) A 100 % increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson’s disease. Mov Disord 19:687–692. doi:10.1002/mds.10713

    Article  PubMed  Google Scholar 

  28. Kordower JH, Chu Y, Hauser RA et al (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506. doi:10.1038/nm1747

    Article  CAS  PubMed  Google Scholar 

  29. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    CAS  PubMed  Google Scholar 

  30. Kuhn HG, Winkler J, Kempermann G et al (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17:5820–5829

    CAS  PubMed  Google Scholar 

  31. Lanfer B, Hermann A, Kirsch M et al (2010) Directed growth of adult human white matter stem cell – derived neurons on aligned fibrillar collagen. Tissue Eng Part A 16:1103–1113. doi:10.1089/ten.TEA.2009.0282

    Article  CAS  PubMed  Google Scholar 

  32. Lazarini FO, Lledo P‑M (2011) Is adult neurogenesis essential for olfaction? Trends Neurosci 34:20–30. doi:10.1016/j.tins.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  33. Lee S‑J, Desplats P, Sigurdson C et al (2010) Cell-to-cell transmission of non-prion protein aggregates. Nat Rev Neurol 6:702–706. doi:10.1038/nrneurol.2010.145

    Article  PubMed  Google Scholar 

  34. Li J‑Y, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503. doi:10.1038/nm1746

    Article  CAS  PubMed  Google Scholar 

  35. Li J‑Y, Englund E, Widner H et al (2010) Characterization of Lewy body pathology in 12-and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with Parkinson’s disease. Mov Disord 25:1091–1096. doi:10.1002/mds.23012

    Article  PubMed  Google Scholar 

  36. Li W, Englund E, Widner H et al (2016) Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc Natl Acad Sci USA. doi:201605245. doi:10.1073/pnas.1605245113

  37. Lim Y, Kehm VM, Li C et al (2010) Forebrain overexpression of alpha-synuclein leads to early postnatal hippocampal neuron loss and synaptic disruption. Exp Neurol 221:86–97. doi:10.1016/j.expneurol.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  38. Lindvall O, Backlund EO, Farde L et al (1987) Transplantation in Parkinson’s disease: Two cases of adrenal medullary grafts to the putamen. Ann Neurol 22:457–468. doi:10.1002/ana.410220403

    Article  CAS  PubMed  Google Scholar 

  39. Lindvall O, Sawle G, Widner H et al (1994) Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann Neurol 35:172–180. doi:10.1002/ana.410350208

    Article  CAS  PubMed  Google Scholar 

  40. Madrazo I, Drucker-Colín R, Díaz V et al (2010) Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable parkinson’s disease. N Engl J Med 316:831–834. doi:10.1056/NEJM198704023161402

    Article  Google Scholar 

  41. Marxreiter F, Ettle B, May VEL et al (2013) Neurobiology of disease. Neurobiol Dis 59:38–51. doi:10.1016/j.nbd.2013.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marxreiter F, Nuber S, Kandasamy M et al (2009) Changes in adult olfactory bulb neurogenesis in mice expressing the A30P mutant form of alpha-synuclein. Eur J Neurosci 29:879–890. doi:10.1111/j.1460-9568.2009.06641.x

    Article  PubMed  Google Scholar 

  43. Masliah E, Rockenstein E, Mallory M et al (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269

    Article  CAS  PubMed  Google Scholar 

  44. Melrose HL, Lincoln SJ, Tyndall GM, Farrer MJ (2006) Parkinson’s disease: a rethink of rodent models. Exp Brain Res 173:196–204. doi:10.1007/s00221-006-0461-3

    Article  PubMed  Google Scholar 

  45. Messier B, Leblond CP, Smart I (1958) Presence of DNA synthesis and mitosis in the brain of young adult mice. Exp Cell Res 14:224–226

    Article  CAS  PubMed  Google Scholar 

  46. Morgane PJ, Galler JR, Mokler DJ (2005) A review of systems and networks of the limbic forebrain/limbic midbrain. Prog Neurobiol 75:143–160. doi:10.1016/j.pneurobio.2005.01.001

    Article  PubMed  Google Scholar 

  47. Muller J, Ossig C, Greiner JFW et al (2014) Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats. Stem Cells Transl Med 4:31–43. doi:10.5966/sctm.2014-0078

    Article  PubMed  PubMed Central  Google Scholar 

  48. Negoias S, Croy I, Gerber J et al (2010) Reduced olfactory bulb volume and olfactory sensitivity in patients with acute major depression. Neuroscience 169:415–421. doi:10.1016/j.neuroscience.2010.05.012

    Article  CAS  PubMed  Google Scholar 

  49. Nuber S, Harmuth F, Kohl Z et al (2013) A progressive dopaminergic phenotype associated with neurotoxic conversion of α‑synuclein in BAC-transgenic rats. Brain 136:412–432. doi:10.1093/brain/aws358

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nuber S, Petrasch-Parwez E, Winner B et al (2008) Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease. J Neurosci 28:2471–2484. doi:10.1523/JNEUROSCI.3040-07.2008

    Article  CAS  PubMed  Google Scholar 

  51. Olanow CW, Goetz CG, Kordower JH et al (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54:403–414. doi:10.1002/ana.10720

    Article  PubMed  Google Scholar 

  52. Olanow CW, Stern MB, Sethi K (2009) The scientific and clinical basisi for the treatment of Parkinson’s disease. Neurology 72:1–S1. doi:10.1212/WNL.0b013e318198dace

    Article  Google Scholar 

  53. Papez JW (1939) Connections of the pulivar. Arch Neurol Psychiatry 41:277. doi:10.1001/archneurpsyc.1939.02270140063005

    Article  Google Scholar 

  54. Park J‑H, Enikolopov G (2010) Transient elevation of adult hippocampal neurogenesis after dopamine depletion. Exp Neurol 222:267–276. doi:10.1016/j.expneurol.2010.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Piccini P, Brooks DJ, Björklund A et al (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 2:1137–1140. doi:10.1038/16060

    Article  CAS  PubMed  Google Scholar 

  56. Pont-Sunyer C, Hotter A, Gaig C et al (2015) The Onset of Nonmotor Symptoms in Parkinson’s disease [The ONSET PD Study]. Mov Disord 30:229–237. doi:10.1002/mds.26077

    Article  PubMed  Google Scholar 

  57. Pont-Sunyer C, Hotter A, Gaig C et al (2015) The Onset of Nonmotor Symptoms in Parkinson’s disease [The ONSET PD Study]. Mov Disord 30:229–237. doi:10.1002/mds.26077

    Article  PubMed  Google Scholar 

  58. Redmond DE, Roth RH, Spencer DD et al (1993) Neural transplantation for neurodegenerative diseases: past, present, and future. Ann N Y Acad Sci 695:258–266

    Article  PubMed  Google Scholar 

  59. Rockenstein E, Mallory M (2002) Differential neuropathological alterations in transgenic mice expressing α‑synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res. doi:10.1002/jnr.10231

  60. Rotheneichner P, Lange S, O’Sullivan A et al (2014) Hippocampal neurogenesis and antidepressive therapy: shocking relations. Neural Plast 2014:1–14. doi:10.1155/2014/723915

    Article  Google Scholar 

  61. Sanai N, Tramontin AD, Quiñones-Hinojosa A et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744. doi:10.1038/nature02301

    Article  CAS  PubMed  Google Scholar 

  62. Sano K, Sato F, Hoshino T, Nagai M (1965) Experimental and clinical studies of radiosensitizers in brain tumors, with special reference to BUdR-antimetabolite continuous regional infusion-radiation therapy [BAR therapy. Neurol Med Chir (Tokyo) 7:51–72

    Article  CAS  Google Scholar 

  63. Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6‑OHDA and MPTP. Cell Tissue Res 318:215–224. doi:10.1007/s00441-004-0938-y

    Article  PubMed  Google Scholar 

  64. Schurig K, Zieris A, Hermann A et al (2015) Neurotropic growth factors and glycosaminoglycan based matrices to induce dopaminergic tissue formation. Biomaterials 67:205–213. doi:10.1016/j.biomaterials.2015.07.029

    Article  CAS  PubMed  Google Scholar 

  65. Shiba M, Bower JH, Maraganore DM et al (2000) Anxiety disorders and depressive disorders preceding Parkinson’s disease: a case-control study. Mov Disord 15:669–677

    Article  CAS  PubMed  Google Scholar 

  66. Spalding KL, Bergmann O, Alkass K et al (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227. doi:10.1016/j.cell.2013.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840. doi:10.1038/42166

    Article  CAS  PubMed  Google Scholar 

  68. Stover NP, Bakay RAE, Subramanian T et al (2005) Intrastriatal implantation of human retinal pigment epithelial cells attached to microcarriers in advanced Parkinson disease. Arch Neurol 62:1833–1837. doi:10.1001/archneur.62.12.1833

    Article  PubMed  Google Scholar 

  69. Suzuki K, Okada K, Wakuda T et al (2010) Destruction of Dopaminergic neurons in the midbrain by 6‑Hydroxydopamine decreases Hippocampal cell proliferation in rats: reversal by Fluoxetine. PLoS ONE 5:e9260. doi:10.1371/journal.pone.0009260.g006

    Article  PubMed  PubMed Central  Google Scholar 

  70. van den Berge SA, van Strien ME, Korecka JA et al (2011) The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain 134:3249–3263. doi:10.1093/brain/awr256

    Article  PubMed  Google Scholar 

  71. Winkler J, Kassubek J (2011) Parkinson’s disease risk score: moving to a premotor diagnosis. J Neurol 258:311–315. doi:10.1007/s00415-011-5952-x

    Article  Google Scholar 

  72. Winner B, Couillard-Despres S, Geyer M et al (2008) Dopaminergic lesion enhances growth factor-induced striatal neuroblast migration. J Neuropathol Exp Neurol 67:105–116. doi:10.1097/nen.0b013e3181630cff

    Article  CAS  PubMed  Google Scholar 

  73. Winner B, Desplats P, Hagl C et al (2009) Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model. Exp Neurol 219:543–552. doi:10.1016/j.expneurol.2009.07.013

    Article  CAS  PubMed  Google Scholar 

  74. Winner B, Geyer M, Couillard-Despres S et al (2006) Striatal deafferentation increases dopaminergic neurogenesis in the adult olfactory bulb. Exp Neurol 197:113–121. doi:10.1016/j.expneurol.2005.08.028

    Article  CAS  PubMed  Google Scholar 

  75. Winner B, Jappelli R, Maji SK et al (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108:4194–4199. doi:10.1073/pnas.1100976108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Winner B, Lie DC, Rockenstein E et al (2004) Human wild-type alpha-synuclein impairs neurogenesis. J Neuropathol Exp Neurol 63:1155–1166

    Article  CAS  PubMed  Google Scholar 

  77. Yamada M (2004) Neurogenesis in olfactory bulb identified by retroviral labeling in normal and 1‑methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated adult mice. Neuroscience 124:173–181. doi:10.1016/j.neuroscience.2003.10.040

    Article  CAS  PubMed  Google Scholar 

  78. Yang D, Li Q, Fang L et al (2011) Reduced neurogenesis and pre-synaptic dysfunction in the olfactory bulb of a rat model of depression. Neuroscience 192:609–618. doi:10.1016/j.neuroscience.2011.06.043

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Winkler.

Ethics declarations

Interessenkonflikt

F. Marxreiter, A. Storch und J. Winkler geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marxreiter, F., Storch, A. & Winkler, J. Zellersatz und adulte Neurogenese beim idiopathischen Parkinson-Syndrom. Nervenarzt 87, 805–813 (2016). https://doi.org/10.1007/s00115-016-0157-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-016-0157-2

Schlüsselwörter

Keywords

Navigation