Skip to main content
Log in

Radiologisch-isoliertes Syndrom

Wenn nur das MRT „Multiple Sklerose“ sagt

Radiologically isolated syndrome

Multiple sclerosis based solely on MRI findings?

  • (unbekannt)
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Der zunehmende Einsatz der Magnetresonanztomographie (MRT) in der Neurologie hat auch einen Zuwachs an inzidentellen Befunden mit sich gebracht. Eine adäquate Einschätzung von bislang asymptomatischen Patienten, bei denen für eine Multiple Sklerose (MS) typische zerebrale Läsionen im Sinne eines Zufallsbefundes nachgewiesen wurden, war bislang aufgrund der fehlenden Studienlage nicht hinreichend möglich. Erfüllen die MRT-Befunde auch noch die Kriterien für eine räumliche Dissemination nach Barkhof-Tintoré und können Differenzialdiagnosen der MS nicht bestätigt werden, spricht man von einem sog. radiologisch-isolierten Syndrom.

In dieser Übersichtsarbeit werden die aktuellen Arbeiten zum radiologisch-isolierten Syndrom erörtert sowie Diagnosekriterien und therapeutische Überlegungen vorgestellt. In zwei Studien konnte gezeigt werden, dass ein Teil der Patienten mit einem radiologisch-isolierten Syndrom ein erhöhtes Risiko aufweist, zeitnah sowohl eine radiologische Progression als auch ein klinisches Erstereignis zu erleiden. Das radiologisch-isolierte Syndrom ist daher als mögliches Vorstadium zum Erstereignis einer MS einzustufen und zieht tiefer gehende therapeutische Überlegungen nach sich. Angesichts der unbefriedigenden Datenlage wird auf den Neurologen neben differenzialdiagnostischen Überlegungen eine umfassende Beraterrolle zukommen. In dieser Arbeit fassen wir das Wissen über das radiologisch-isolierte Syndrom zusammen und schlagen ein pragmatisches Vorgehen für die weitere Diagnostik und Therapie vor.

Summary

Incidental brain magnetic resonance imaging (MRI) findings are the result of an increasing usage of MRI in the diagnostic work-up of patients. An adequate assessment of patients in which brain lesions typical for multiple sclerosis (MS) are determined but who have been asymptomatic so far is problematic, especially when Barkhof-Tintoré criteria for spatial dissemination are fulfilled and no other differential diagnosis can be confirmed. This entity, the so-called radiologically isolated syndrome, constitutes a major diagnostic and therapeutic challenge. Two recent studies revealed that a subgroup of patients with radiologically isolated syndrome are at high risk for near-term development of MR-based progression and occurrence of the first clinical event. Hence, the radiologically isolated syndrome has to be classified as a possible preliminary phase of the clinical manifestation of MS in a subgroup of patients and entails in-depth therapeutic considerations. This article covers the current literature for this syndrome and, in the absence of official guidelines, provides a pragmatic diagnostic and therapeutic approach for patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Barkhof F, Filippi M, Miller DH et al (1997) Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain 120 (11):2059–2069

    Article  PubMed  Google Scholar 

  2. Bitsch A, Schuchardt J, Bunkowski S et al (2000) Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123 (6):1174–1183

    Article  PubMed  Google Scholar 

  3. Bourdette D, Simon J (2009) The radiologically isolated syndrome: is it very early multiple sclerosis? Neurology 72:780–781

    Article  PubMed  Google Scholar 

  4. Castaigne P, Lhermitte F, Escourolle R et al (1981) Les scleroses en plaques asymptomatiques. Rev Neurol 137:729–739

    PubMed  Google Scholar 

  5. Clanet M (2008) Jean-Martin Charcot. 1825 to 1893. Int MS J 15:59–61

    PubMed  Google Scholar 

  6. Comi G, Filippi M, Barkhof F et al (2001) Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet 357:1576–1582

    Article  PubMed  Google Scholar 

  7. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    Article  PubMed  Google Scholar 

  8. Confavreux C, Vukusic S (2008) The clinical epidemiology of multiple sclerosis. Neuroimaging Clin N Am 18:589–622

    Article  PubMed  Google Scholar 

  9. Dalton CM, Brex PA, Miszkiel KA et al (2002) Application of the new McDonald criteria to patients with clinically isolated syndromes suggestive of multiple sclerosis. Ann Neurol 52:47–53

    Article  PubMed  Google Scholar 

  10. de Seze J, Vermersch P (2005) Sequential magnetic resonance imaging follow-up of multiple sclerosis before the clinical phase. Mult Scler 11:395–397

    Article  Google Scholar 

  11. Engell T (1989) A clinical patho-anatomical study of clinically silent multiple sclerosis. Acta Neurol Scand 79:428–430

    Article  PubMed  Google Scholar 

  12. Feuillet L, Reuter F, Audoin B et al (2007) Early cognitive impairment in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 13:124–127

    Article  PubMed  Google Scholar 

  13. Gilbert JJ, Sadler M (1983) Unsuspected multiple sclerosis. Arch Neurol 40:533–536

    PubMed  Google Scholar 

  14. Hakiki B, Goretti B, Portaccio E et al (2008) ‚Subclinical MS’: follow-up of four cases. Eur J Neurol 15:858–861

    Article  PubMed  Google Scholar 

  15. Harting I, Sellner J, Meyding-Lamade U et al (2003) Bildgebung, Diagnosekriterien und Differenzialdiagnose der Multiplen Sklerose. Rofo 175:613–622

    PubMed  Google Scholar 

  16. Hemmer B, Nessler S, Zhou D et al (2006) Immunopathogenesis and immunotherapy of multiple sclerosis. Nat Clin Pract Neurol 2:201–211

    Article  PubMed  Google Scholar 

  17. Jacobs LD, Beck RW, Simon JH et al (2000) Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group. N Engl J Med 343:898–904

    Article  PubMed  Google Scholar 

  18. Kappos L, Freedman MS, Polman CH et al (2010) Long-term effect of early treatment with interferon beta-1b after a first clinical event suggestive of multiple sclerosis: 5-year active treatment extension of the phase 3 BENEFIT trial. Lancet Neurol (in press)

  19. Kappos L, Polman CH, Freedman MS et al (2006) Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology 67:1242–1249

    Article  PubMed  Google Scholar 

  20. Katzman GL, Dagher AP, Patronas NJ (1999) Incidental findings on brain magnetic resonance imaging from 1000 asymptomatic volunteers. JAMA 282:36–39

    Article  PubMed  Google Scholar 

  21. Kesselring J (1997) Klinik In: Kesselring J (ed) Multiple Sklerose. Kohlhammer, Stuttgart Berlin Köln, S 95–172

  22. Korteweg T, Tintore M, Uitdehaag B et al (2006) MRI criteria for dissemination in space in patients with clinically isolated syndromes: a multicentre follow-up study. Lancet Neurol 5:221–227

    Article  PubMed  Google Scholar 

  23. Kuhlmann T, Lingfeld G, Bitsch A et al (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212

    Article  PubMed  Google Scholar 

  24. Lassmann H (2005) Multiple sclerosis pathology: evolution of pathogenetic concepts. Brain Pathol 15:217–222

    Article  PubMed  Google Scholar 

  25. Lebrun C, Bensa C, Debouverie M et al (2008) Unexpected multiple sclerosis: follow-up of 30 patients with magnetic resonance imaging and clinical conversion profile. J Neurol Neurosurg Psychiatry 79:195–198

    Article  PubMed  Google Scholar 

  26. Lebrun C, Bensa C, Debouverie M et al (2009) Association between clinical conversion to multiple sclerosis in radiologically isolated syndrome and magnetic resonance imaging, cerebrospinal fluid, and visual evoked potential: follow-up of 70 patients. Arch Neurol 66:841–846

    Article  PubMed  Google Scholar 

  27. Link H, Huang YM (2006) Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness. J Neuroimmunol 180:17–28

    Article  PubMed  Google Scholar 

  28. Lyoo IK, Seol HY, Byun HS et al (1996) Unsuspected multiple sclerosis in patients with psychiatric disorders: a magnetic resonance imaging study. J Neuropsychiatry Clin Neurosci 8:54–59

    PubMed  Google Scholar 

  29. Mäurer M (2009) Radiologisch isoliertes Syndrom – Differenzialdiagnose und Vorgehen. Akt Neurol 36:265–267

    Article  Google Scholar 

  30. McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    Article  PubMed  Google Scholar 

  31. McDonnell GV, Cabrera-Gomez J, Calne DB et al (2003) Clinical presentation of primary progressive multiple sclerosis 10 years after the incidental finding of typical magnetic resonance imaging brain lesions: the subclinical stage of primary progressive multiple sclerosis may last 10 years. Mult Scler 9:204–209

    Article  PubMed  Google Scholar 

  32. Meuth S, Bittner S, Kleinschnitz C (2009) Präklinische Multiple Sklerose und Therapieoptionen. Nervenarzt 36:268–270

    Google Scholar 

  33. Miller D, McDonald I, Smith K (2006) The diagnosis of multiple sclerosis. In: Compston A (ed) McAlpine‘s Multiple Sclerosis. Churchill Livingstone Elsevier, Cambridge, p 347–388

  34. Neema M, Goldberg-Zimring D, Guss ZD et al (2009) 3 T MRI relaxometry detects T2 prolongation in the cerebral normal-appearing white matter in multiple sclerosis. Neuroimage 46:633–641

    Article  PubMed  Google Scholar 

  35. O’Riordan JI, Thompson AJ, Kingsley DP et al (1998) The prognostic value of brain MRI in clinically isolated syndromes of the CNS. A 10-year follow-up. Brain 121 (3):495–503

    Article  Google Scholar 

  36. Okuda DT, Mowry EM, Beheshtian A et al (2009) Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology 72:800–805

    Article  PubMed  Google Scholar 

  37. Polman CH, Reingold SC, Edan G et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the „McDonald Criteria“. Ann Neurol 58:840–846

    Article  PubMed  Google Scholar 

  38. Poser CM, Paty DW, Scheinberg L et al (1983) New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 13:227–231

    Article  PubMed  Google Scholar 

  39. Rieckmann P (2006) Immunmodulatorische Stufentherapie der Multiplen Sklerose. Aktuelle Therapieempfehlungen. Nervenarzt 77:1506–1518

    Article  PubMed  Google Scholar 

  40. Rose AS, Ellison GW, Myers LW et al (1976) Criteria for the clinical diagnosis of multiple sclerosis. Neurology 26:20–22

    PubMed  Google Scholar 

  41. Sastre-Garriga J, Tintore M, Rovira A et al (2003) Conversion to multiple sclerosis after a clinically isolated syndrome of the brainstem: cranial magnetic resonance imaging, cerebrospinal fluid and neurophysiological findings. Mult Scler 9:39–43

    Article  PubMed  Google Scholar 

  42. Schirmer L, Albert M, Buss A et al (2009) Substantial early, but non-progressive neuronal loss in MS spinal cord. Ann Neurol 66:698–704

    Article  PubMed  Google Scholar 

  43. Sellner J, Lüthi N, Bühler R et al (2008) Acute partial transverse myelitis: risk factors for conversion to multiple sclerosis. Eur J Neurol 15:398–405

    Article  PubMed  Google Scholar 

  44. Sellner J, Lüthi N, Schüpbach WM et al (2009) Diagnostic workup of patients with acute transverse myelitis: spectrum of clinical presentation, neuroimaging and laboratory findings. Spinal Cord 47:312–317

    Article  PubMed  Google Scholar 

  45. Sicotte NL, Kern KC, Giesser BS et al (2008) Regional hippocampal atrophy in multiple sclerosis. Brain 131:1134–1141

    Article  PubMed  Google Scholar 

  46. Summers M, Swanton J, Fernando K et al (2008) Cognitive impairment in multiple sclerosis can be predicted by imaging early in the disease. J Neurol Neurosurg Psychiatry 79:955–958

    Article  PubMed  Google Scholar 

  47. Tiemann L, Penner I, Haupts M et al (2009) Cognitive decline in multiple sclerosis: impact of topographic lesion distribution on differential cognitive deficit patterns. Mult Scler 15:1164–1174

    Article  PubMed  Google Scholar 

  48. Tienari PJ, Salonen O, Wikstrom J et al (1992) Familial multiple sclerosis: MRI findings in clinically affected and unaffected siblings. J Neurol Neurosurg Psychiatry 55:883–886

    Article  PubMed  Google Scholar 

  49. Tintore M (2008) Rationale for early intervention with immunomodulatory treatments. J Neurol 255(Suppl 1):37–43

    Article  PubMed  Google Scholar 

  50. Tintore M, Rovira A, Brieva L et al (2001) Isolated demyelinating syndromes: comparison of CSF oligoclonal bands and different MR imaging criteria to predict conversion to CDMS. Mult Scler 7:359–363

    PubMed  Google Scholar 

  51. Tintore M, Rovira A, Martinez MJ et al (2000) Isolated demyelinating syndromes: comparison of different MR imaging criteria to predict conversion to clinically definite multiple sclerosis. AJNR Am J Neuroradiol 21:702–706

    PubMed  Google Scholar 

  52. Tintore M, Rovira A, Rio J et al (2003) New diagnostic criteria for multiple sclerosis: application in first demyelinating episode. Neurology 60:27–30

    PubMed  Google Scholar 

  53. Tintore M, Rovira A, Rio J et al (2006) Baseline MRI predicts future attacks and disability in clinically isolated syndromes. Neurology 67:968–972

    Article  PubMed  Google Scholar 

  54. Tintore M, Rovira A, Rio J et al (2008) Do oligoclonal bands add information to MRI in first attacks of multiple sclerosis? Neurology 70:1079–1083

    Article  PubMed  Google Scholar 

  55. Trapp BD, Peterson J, Ransohoff RM et al (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  PubMed  Google Scholar 

  56. Trebst C, Wiendl H, Stangel M (2006) Konzepte zur Lasionsentstehung bei Multipler Sklerose. Aktueller Diskussionsstand und klinisch-therapeutische Implikationen. Nervenarzt 77:158, 160–152, 164

    Article  PubMed  Google Scholar 

  57. Uitdehaag BM, Kappos L, Bauer L et al (2005) Discrepancies in the interpretation of clinical symptoms and signs in the diagnosis of multiple sclerosis. A proposal for standardization. Mult Scler 11:227–231

    Article  PubMed  Google Scholar 

  58. Wiendl H, Kieseier BC, Gold R et al (2006) Multiple Sklerose – Revision der neuen McDonald-Diagnosekriterien. Nervenarzt 77:1235, 1237–1245

    Article  PubMed  Google Scholar 

Download references

Danksagung

Wir bedanken uns bei Rechtsanwalt Herbert Wartensleben für die Beratung zur rechtlichen Situation der Kostenübernahme durch die Krankenkassen.

Interessenkonflikte

Der korrespondierende Autor weist auf folgende Beziehungen hin: JS und LS geben an, dass keine Interessenkonflikte bestehen. MM hat finanzielle Mittel für Forschungsprojekte von der Firma Merck-Serono erhalten. BH hat Referentenhonorare und finanzielle Mittel für Forschungsprojekte von den Firmen Bayer, Biogen Idec, Merck-Serono und Teva erhalten.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sellner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sellner, J., Schirmer, L., Hemmer, B. et al. Radiologisch-isoliertes Syndrom. Nervenarzt 81, 1208–1217 (2010). https://doi.org/10.1007/s00115-010-2998-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-010-2998-4

Schlüsselwörter

Keywords

Navigation