Skip to main content
Log in

Visual antipredator effects of web flexing in an orb web spider, with special reference to web decorations

  • Original Article
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Some visual antipredator strategies involve the rapid movement of highly contrasting body patterns to frighten or confuse the predator. Bright body colouration, however, can also be detected by potential predators and used as a cue. Among spiders, Argiope spp. are usually brightly coloured but they are not a common item in the diet of araneophagic wasps. When disturbed, Argiope executes a web-flexing behaviour in which they move rapidly and may be perceived as if they move backwards and towards an observer in front of the web. We studied the mechanisms underlying web-flexing behaviour as a defensive strategy. Using multispectral images and high-speed videos with deep-learning-based tracking techniques, we evaluated body colouration, body pattern, and spider kinematics from the perspective of a potential wasp predator. We show that the spider’s abdomen is conspicuous, with a disruptive colouration pattern. We found that the body outline of spiders with web decorations was harder to detect when compared to spiders without decorations. The abdomen was also the body part that moved fastest, and its motion was composed mainly of translational (vertical) vectors in the potential predator’s optical flow. In addition, with high contrast colouration, the spider’s movement might be perceived as a sudden change in body size (looming effect) as perceived by the predator. These effects alongside the other visual cues may confuse potential wasp predators by breaking the spider body outline and affecting the wasp’s flight manoeuvre, thereby deterring the wasp from executing the final attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The data will be archived and made available on GitHub (https://github.com/dinrao/Argiope).

S1 High-speed video (500 fps) showing the web-flexing behaviour of Argiope aurantia. S2 high-speed video (500 fps) showing the marks tracked in the spider body to evaluate the kinematic behaviour. These are also available as supplementary materials online.

References

  • Ache JM, Polsky J, Alghailani S, Parekh R, Breads P, Peek MY, Bock DD, Von Reyn CR, Card GM (2019) Neural basis for looming size and velocity encoding in the Drosophila giant fiber escape pathway. Current Biology 29(6):1073–1081.e4. https://doi.org/10.1016/j.cub.2019.01.079

    Article  CAS  PubMed  Google Scholar 

  • Baird E, Kreiss E, Wcislo W, Warrant EJ, Dacke M (2011) Nocturnal insects use optic flow for flight control. Biol Lett 7:499–501

  • Bateman PW, Fleming PA (2013) The influence of web silk decorations on fleeing behaviour of Florida orb weaver spiders, Argiope florida (Aranaeidae). Canadian Journal of Zoology 91:468–472

    Article  Google Scholar 

  • Blackledge TA, Pickett KM (2000) Predatory interactions between mud-dauber wasps (Hymenoptera, Sphecidae) and Argiope (Araneae, Araneidae) in captivity. Journal of Arachnology 28:211–216

    Article  Google Scholar 

  • Blackledge TA, Wenzel JW (1999) Do stabilimenta in orb webs attract prey or defend spiders? Behavioral Ecology 10:372–376

    Article  Google Scholar 

  • Bruce MJ (2006) Silk decorations: controversy and consensus. Journal of Zoology 269:89–97

    Article  Google Scholar 

  • Bruce MJ, Heiling AM, Herberstein ME (2005) Spider signals: are web decorations visible to birds and bees? Biology Letters 1:299–302

    Article  PubMed  PubMed Central  Google Scholar 

  • Caro T (2014) Antipredator deception in terrestrial vertebrates. Current Zoology 60:16–25

    Article  Google Scholar 

  • Caro T, Ruxton G (2019) Aposematism: unpacking the defences. Trends in Ecology & Evolution 34:595–604

    Article  Google Scholar 

  • Caro T, Argueta Y, Briolat ES, Bruggink J, Kasprowsky M, Lake J, Mitchell MJ, Richardson S, How M (2019) Benefits of zebra stripes: behaviour of tabanid flies around zebras and horses. PLOS ONE 14:e0210831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caves EM, Johnsen S (2017) AcuityView: an R package for portraying the effects of visual acuity on scenes observed by an animal. Methods Ecol Evol 9:793–797

  • Cedhagen T, Björklund S (2007) Is web oscillation in the orb-web spider Argiope lobata (Pallas, 1772) (Araneidae) an anti-predatory behaviour? Newsletter of the British Arachnological Society 109:10–11

  • Chakravarthi A, Rajus S, Kelber A, Dacke M, Baird E (2018) Differences in spatial resolution and contrast sensitivity of flight control in the honeybees Apis cerana and Apis mellifera. Journal of Experimental Biology 221:jeb184267

    Article  PubMed  Google Scholar 

  • Cheng R-C, Tso I-M (2007) Signaling by decorating webs: luring prey or deterring predators? Behavioral Ecology 18:1085–1091

    Article  Google Scholar 

  • Cloudsley-Thompson JL (1995) A review of the anti-predator devices of spiders. Bulletin of the British Arachnological Society 10:81–96

    Google Scholar 

  • Cox CL, Chung AK, Blackwell C, Davis MM, Gulsby M, Islam H, Miller N, Lambert C, Lewis O, Rector IV, Walsh M, Yamamoto AD, Davis Rabosky AR (2021) Tactile stimuli induce deimatic antipredator displays in ringneck snakes. Ethology 127:465–474

    Article  Google Scholar 

  • Cronin TW, Johnsen S, Marshall J, Warrant EJ (2014) Visual ecology. Princeton University Press, Princeton, New Jersey

    Book  Google Scholar 

  • Cuthill IC, Stevens M, Sheppard J, Maddocks T, Párraga CA, Troscianko TS (2005) Disruptive coloration and background pattern matching. Nature 434:72–74

    Article  CAS  PubMed  Google Scholar 

  • Defrize J, Théry M, Casas J (2010) Background colour matching by a crab spider in the field: a community sensory ecology perspective. Journal of Experimental Biology 213:1425–1435

    Article  PubMed  Google Scholar 

  • Derrington AM, Allen HA, Delicato LS (2004) Visual mechanisms of motion analysis and motion perception. Annual Review of Psychology 55:181–205

    Article  PubMed  Google Scholar 

  • Donohue CG, Bagheri ZM, Partridge JC, Hemmi JM (2022) Fiddler crabs are unique in timing their escape responses based on speed-dependent visual cues. Current Biology 32:5159–5164.e4

    Article  CAS  PubMed  Google Scholar 

  • Drinkwater E, Allen WL, Endler JA, Hanlon RT, Holmes G, Homziak NT, Kang C, Leavell BC, Lehtonen J, Loeffler-Henry K, Ratcliffe JM, Rowe C, Ruxton GD, Sherratt TN, Skelhorn J, Skojec C, Smart HR, White TE, Yack JE et al (2022) A synthesis of deimatic behaviour. Biological Reviews 97(6):2237–2267

    Article  PubMed  Google Scholar 

  • Eberhard W (1970) The predatory behavior of two wasps, Agenoideus humilis (Pompilidae) and Sceliphron caementarium (Sphecidae), on the orb weaving spider, Araneus cornutus (Araneidae). Psyche 77:243–251

    Article  Google Scholar 

  • Eberhard WG (2020) Chapter 3. Function of orb web designs. In: Eberhard WG (ed) Spider webs: Behaviour, function, and evolution. University of Chicago Press, Chicago

    Chapter  Google Scholar 

  • Egelhaaf M (2023) Optic flow based spatial vision in insects. Journal of Comparative Physiology A 2023:1–21

    Google Scholar 

  • Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP (2012) Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Frontiers in Neural Circuits 6:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisner T, Nowicki S (1983) Spider web protection through visual advertisement: role of the Stabilimentum. Science 219:185–187

    Article  CAS  PubMed  Google Scholar 

  • Endler JA (1991) Interactions between predators and prey. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell Scientific Publications, Oxford, pp 169–202

    Google Scholar 

  • Endler JA (2012) A framework for analysing colour pattern geometry: adjacent colours. Biological Journal of the Linnean Society 107(2):233–253

    Article  Google Scholar 

  • Endler JA, Cole GL, Kranz AM (2018) Boundary strength analysis: combining colour pattern geometry and coloured patch visual properties for use in predicting behaviour and fitness. Methods in Ecology and Evolution 9:2334–2348

    Article  Google Scholar 

  • Feller KD, Sharkey CR, Mcduffee-Altekruse A, Bracken-Grissom HD, Lord NP, Porter ML, Schweikert LE (2020) Surf and turf vision: patterns and predictors of visual acuity in compound eye evolution. Arthropod Structure & Development 60:101002

    Article  Google Scholar 

  • Gawryszewski FM (2017) Anti-predator strategies. In: Viera C, Gonzaga MO (eds) Behaviour and Ecology of Spiders: Contributions from the Neotropical region. Springer Nature, Switzerland, pp 397–415

    Chapter  Google Scholar 

  • Gombin J, Vaidyanathan R, Agafonkin V (2017) concaveman: a very fast 2D concave hull algorithm. R package version 1

    Google Scholar 

  • Gonzaga MO, Vasconcellos-Neto J (2005) Testing the functions of detritus stabilimenta in webs of Cyclosa fililineata and Cyclosa morretes (Araneae: Araneidae): do they attract prey or reduce the risk of predation? Ethology 111:479–491

    Article  Google Scholar 

  • Haag J, Denk W, Borst A (2004) Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. Proceedings of the National Academy of Sciences of the United States of America 101:16333–16338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heathcote RJ, Troscianko J, Darden SK, Naisbett-Jones LC, Laker PR, Brown AM, Ramnarine IW, Walker J, Croft DP (2020) A matador-like predator diversion strategy driven by conspicuous coloration in guppies. Current Biology 30(14):2844–2851

    Article  CAS  PubMed  Google Scholar 

  • Hoffmaster DK (1982) Predator avoidance behaviors of five species of Panamanian orb-weaving spiders (Araneae; Araneidae, Uloboridae). Journal of Arachnology 10:69–73

    Google Scholar 

  • Horridge A (2019) The discovery of a visual system: the honeybee. CABI

  • How MJ, Zanker JM (2014) Motion camouflage induced by zebra stripes. Zoology 117:163–170

    Article  PubMed  Google Scholar 

  • Hughes AE, Troscianko J, Stevens M (2014) Motion dazzle and the effects of target patterning on capture success. BMC Evolutionary Biology 14:201

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes AE, Jones C, Joshi K, Tolhurst DJ (2017) Diverted by dazzle: perceived movement direction is biased by target pattern orientation. Proc R Soc B 284:20170015

  • Jackson RR (1992) Predator-prey interactions between web-invading jumping spiders and Argiope appensa (Araneae, Araneidae), a tropical orb-weaving spider. Journal of Zoology 228:509–520

    Article  Google Scholar 

  • Jackson RR, Rowe RJ, Wilcox RS (1993) Anti-predator defences of Argiope appensa (Araneae, Araneidae), a tropical orb-weaving spider. Journal of Zoology 229:121–132

    Article  Google Scholar 

  • Kelley LA, Kelley JL (2014) Animal visual illusion and confusion: the importance of a perceptual perspective. Behavioral Ecology 25:450–463

    Article  Google Scholar 

  • Kodandaramaiah U, Palathingal S, Bindu Kurup G, Murali G (2020) What makes motion dazzle markings effective against predation? Behavioral Ecology 31:43–53

    Google Scholar 

  • Li D, Lee WS (2004) Predator-induced plasticity in web-building behaviour. Anim Behav 67:309–318

    Article  Google Scholar 

  • Li D, Lim ML, Seah WK, Tay SL (2004) Prey attraction as a possible function of discoid stabilimenta of juvenile orb-spinning spiders. Animal Behaviour 68:629–635

    Article  Google Scholar 

  • Lubin YD (1974) Stabilimenta and barrier webs in the orb webs of Argiope argentata (Araneae, Araneidae) on Daphne and Santa Cruz Islands, Galapagos. The Journal of Arachnology 2:119–126

    Google Scholar 

  • Martin E, Steinmetz HL, Baek SY, Gilbert FR, Brandley NC (2023) Rapid shifts in visible Carolina Grasshopper (Dissosteira carolina) coloration during flights. Front Ecol  Evol 10: 900544

  • Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, Bethge M (2018) DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience 21:1281–1289

    Article  CAS  PubMed  Google Scholar 

  • Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504:183–200

    Article  PubMed  Google Scholar 

  • Muijres FT, Elzinga MJ, Melis JM, Dickinson MH (2014) Flies evade looming targets by executing rapid visually directed banked turns. Science 344:172–177

    Article  CAS  PubMed  Google Scholar 

  • Muma MH, Jeffers WF (1945) Studies of the spider prey of several mud-dauber wasps. Annals of the Entomological Society of America 38:245–255

    Article  Google Scholar 

  • Nakata K (2009) To be or not to be conspicuous: the effects of prey availability and predator risk on spider’s web decoration building. Animal Behaviour 78:1255–1260

    Article  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, De Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. Journal of Comparative Physiology A 170:23–40

    Article  CAS  Google Scholar 

  • Pekár S (2014) Comparative analysis of passive defences in spiders (Araneae). Journal of Animal Ecology 83:779–790

    Article  PubMed  Google Scholar 

  • Peron S, Gabbiani F (2009) Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron. Nat Neurosci 12:318–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters RA, Clifford CW, Evans CS (2002) Measuring the structure of dynamic visual signals. animal Behaviour 64:131–146

    Article  Google Scholar 

  • R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing

    Google Scholar 

  • Rao D, Cheng K, Herberstein ME (2008) Stingless bee response to spider webs is dependent on the context of encounter. Behav Ecol Sociobiol 63:209–216

    Article  Google Scholar 

  • Rao D, Webster M, Heiling AM, Bruce MJ, Herberstein ME (2009) The aggregating behaviour of Argiope radon, with special reference to web decorations. Journal of Ethology 27:35–42

    Article  Google Scholar 

  • Raudies F (2013) Optic flow. Scholarpedia 8:30724

    Article  Google Scholar 

  • Robinson MH, Robinson B (1970) The stabilimentum of the orb web spider, Argiope argentata: an improbable defence against predators. The Canadian Entomologist 102:641–655

    Article  Google Scholar 

  • Robledo-Ospina LE, Morehouse N, Escobar F, Falcón-Brindis A, Jiménez ML, Rao D (2021) Prey colour biases of araneophagic mud-daubing wasps. Animal Behaviour 172:25–33

    Article  Google Scholar 

  • Robledo-Ospina LE, Morehouse N, Escobar F, Rao D (2022) Search image formation for spider prey in a mud dauber wasp. Behavioural Processes 197:104619

    Article  PubMed  Google Scholar 

  • Rodríguez-Morales D, Tapia-Mcclung H, Robledo-Ospina LE, Rao D (2021) Colour and motion affect a dune wasp’s ability to detect its cryptic spider predators. Scientific Reports 11:1–9

    Article  Google Scholar 

  • Rucci M, Ahissar E, Burr D (2018) Temporal coding of visual space. Trends in Cognitive Sciences 22:883–895

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruxton GD, Allen WL, Sherratt TN, Speed MP (2018) Avoiding attack: the evolutionary ecology of crypsis, aposematism, and mimicry. Oxford University Press, Oxford, United Kingdom

    Book  Google Scholar 

  • Santer RD (2013) Motion dazzle: a locust’s eye view. Biol Lett 9:20130811

  • Schaefer HM, Stobbe N (2006) Disruptive coloration provides camouflage independent of background matching. Proc R Soc B 273:2427–2432

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott-Samuel NE, Baddeley R, Palmer CE, Cuthill IC (2011) Dazzle camouflage affects speed perception. PLOS ONE 6:e20233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serres JR, Ruffier F (2017) Optic flow-based collision-free strategies: from insects to robots. Arthropod Structure & Development 46:703–717

    Article  Google Scholar 

  • Sheshadri S, Dann B, Hueser T, Scherberger H (2020) 3D reconstruction toolbox for behavior tracked with multiple cameras. Journal of Open Source Software 5:1849

    Article  Google Scholar 

  • Shragai T, Ping X, Arakaki C, Garlick D, Blumstein DT, Blaisdell AP (2017) Hermit crab response to a visual threat is sensitive to looming cues. PeerJ 5:e4058

    Article  PubMed  PubMed Central  Google Scholar 

  • Soley FG (2019) A possible role of decorations in spiderwebs as protection devices that distract predators. Rev Biol Trop 67:S164–S173

  • Spano L, Long SM, Jakob EM (2012) Secondary eyes mediate the response to looming objects in jumping spiders ( Phidippus audax, Salticidae). Biol Lett 8:949–951

  • Srinivasan MV (1992) How bees exploit optic flow: behavioural experiments and neural models. Philos Trans R Soc London Ser B 337:253–259

    Article  Google Scholar 

  • Stevens M, Merilaita S (2009) Defining disruptive coloration and distinguishing its functions. Philos Trans R Soc London Ser B 364:481–488

  • Stevens M, Merilaita S (2011) Animal camouflage: mechanisms and function. Cambridge University Press, Cambridge

  • Tan EJ, Elgar MA (2021) Motion: enhancing signals and concealing cues. Biology Open 10:bio058762

    Article  PubMed  PubMed Central  Google Scholar 

  • Temizer I, Joseph D, Baier H, Julia S (2015) A visual pathway for looming-evoked escape in larval zebrafish. Current Biology 25:1823–1834

    Article  CAS  PubMed  Google Scholar 

  • Théry M, Casas J (2009) The multiple disguises of spiders: web colour and decorations, body colour and movement. Philos Trans R Soc 369:471–480

  • Théry M, Debut M, Gomez D, Casas J (2005) Specific color sensitivities of prey and predator explain camouflage in different visual systems. Behavioral Ecology 16:25–29

    Article  Google Scholar 

  • Théry M, Insausti TC, Defrize J, Casas J (2011) The multiple disguises of spiders. In: Stevens M, Merilaita S (eds) Animal camouflage: mechanisms and function. Cambridge University Press, Cambridge, United Kingdom, pp 254–274

    Chapter  Google Scholar 

  • Tolbert W (1975) Predator avoidance behavior and web defensive structures in the orb weavers, Argiope aurantia and Argiope trifasciata (Araneae, Araneidae). Psyche 82:29–52

    Article  Google Scholar 

  • Troscianko J, Stevens M (2015) Image calibration and analysis toolbox – a free software suite for objectively measuring reflectance, colour and pattern. Methods in Ecology and Evolution 6:1320–1331

    Article  PubMed  PubMed Central  Google Scholar 

  • Troscianko J, Skelhorn J, Stevens M (2018) Camouflage strategies interfere differently with observer search images. Proc R Soc B 285:20181386

  • Tyll S, Bonath B, Schoenfeld MA, Heinze H-J, Ohl FW, Noesselt T (2013) Neural basis of multisensory looming signals. NeuroImage 65:13–22

    Article  PubMed  Google Scholar 

  • Uma DB, Weiss MR (2010) Chemical mediation of prey recognition by spider-hunting wasps. Ethology 116:85–95

    Article  Google Scholar 

  • Umbers KD, Lehtonen J, Mappes J (2015) Deimatic displays. Current Biology 25:R58–R59

    Article  CAS  PubMed  Google Scholar 

  • Umbers KD, De Bona S, White TE, Lehtonen J, Mappes J, Endler JA (2017) Deimatism: a neglected component of antipredator defence. Biol Lett 13:20160936

  • Umeton D, Read JCA, Rowe C (2017) Unravelling the illusion of flicker fusion. Biology Letters 13:20160831

    Article  PubMed  PubMed Central  Google Scholar 

  • Umeton D, Tarawneh G, Fezza E, Read JCA, Rowe C (2019) Pattern and speed interact to hide moving prey. Current Biology 29:3109–3113.e3

    Article  CAS  PubMed  Google Scholar 

  • Vagnoni E, Lourenco SF, Longo MR (2015) Threat modulates neural responses to looming visual stimuli. European Journal of Neuroscience 42:2190–2202

    Article  PubMed  Google Scholar 

  • Valkonen JK, Vakkila A, Pesari S, Tuominen L, Mappes J (2020) Protective coloration of European vipers throughout the predation sequence. Animal Behaviour 164:99–104

    Article  Google Scholar 

  • Van Den Berg CP, Troscianko J, Endler JA, Marshall NJ, Cheney KL (2019) Quantitative colour pattern analysis (QCPA): a comprehensive framework for the analysis of colour patterns in nature. bioRxiv 11:316–332

    Google Scholar 

  • Vasas V, Hanley D, Kevan PG, Chittka L (2017) Multispectral images of flowers reveal the adaptive significance of using long-wavelength-sensitive receptors for edge detection in bees. J Comp Physiol A 203(4):301-311

  • Viollet S, Zeil J (2013) Feed-forward and visual feedback control of head roll orientation in wasps (Polistes humilis, Vespidae, Hymenoptera). Journal of Experimental Biology 216:1280–1291

    PubMed  Google Scholar 

  • Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc R Soc B 265:351–358

  • Walter A (2019) Silk decorations in Argiope spiders: consolidation of pattern variation and specific signal function. Journal of Arachnology 47:271–275

    Article  Google Scholar 

  • Wang B, Yu L, Ma N, Zhang Z, Gong D, Liu R, Li D, Zhang S (2021a) Conspicuous cruciform silk decorations deflect avian predator attacks. Integrative Zoology 17(5):689–703

  • Wang B, Yu L, Ma N, Zhang Z, Liu Q, Fan W, Rong Y, Zhang S, Li D (2021b) Discoid decorations function to shield juvenile Argiope spiders from avian predator attacks. Behavioral Ecology 32:1230–1239

    Article  Google Scholar 

  • Yilmaz M, Meister M (2013) Rapid innate defensive responses of mice to looming visual stimuli. Current Biology 23:2011–2015

    Article  CAS  PubMed  Google Scholar 

  • Zeil J (1993) Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera). Journal of Comparative Physiology A 172:207–222

    Article  Google Scholar 

  • Zeil J (1997) The control of optic flow during learning flights. Journal of Comparative Physiology A 180:25–37

    Article  Google Scholar 

Download references

Funding

This project was supported by a Consejo Nacional de Ciencia y Tecnología (CONACyT) Ciencia Básica grant (CB-2016-01/285529). LR-O received support from CONACyT during his PhD program (CONACyT-México 634812/338721).

Author information

Authors and Affiliations

Authors

Contributions

Luis E. Robledo-Ospina: conceptualization (lead); data curation (lead); formal analysis (lead); investigation (lead); methodology (lead); project administration (equal); writing—original draft (lead); writing—review and editing (equal). Nathan Morehouse: conceptualization (supporting); methodology (supporting); writing—review and editing (equal). Federico Escobar: conceptualization (supporting); methodology (supporting); writing—review and editing (supporting). Horacio Tapia-McClung: formal analysis (supporting); methodology (equal); writing—review and editing (equal). Ajay Narendra: data curation (supporting); formal analysis (supporting); methodology (supporting); writing—review and editing (equal). Dinesh Rao: conceptualization (supporting); data curation (supporting); formal analysis (supporting); methodology (equal); project administration (equal); resources (lead); writing—review and editing (equal).

Corresponding author

Correspondence to Dinesh Rao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Matjaž Gregorič

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1:

Supplementary Table 1 Post-hoc comparisons with Holm correction of the speed measured on the different body parts of the spider. The letters L and R indicate the side of the spider leg, left or right, respectively. We also indicate the posterior and anterior region of the abdomen and the anterior part of the cephalothorax (head). * Indicates significant differences. (DOCX 16.4 kb)

S1: Video of Argiope aurantia showing the web-flexing behaviour. (MP4 21.9 mb)

S2: Video of Argiope aurantia’s web-flexing behaviour, showing points tracked. (MP4 22.6 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robledo-Ospina, L.E., Morehouse, N., Escobar, F. et al. Visual antipredator effects of web flexing in an orb web spider, with special reference to web decorations. Sci Nat 110, 23 (2023). https://doi.org/10.1007/s00114-023-01849-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-023-01849-6

Keywords

Navigation