Agostini S, Harvey BP, Wada S, Kon K, Milazzo M, Inaba K, Hall-Spencer JM (2018) Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical−temperate transition zone. Sci Rep 8(1):11354. https://doi.org/10.1038/s41598-018-29251-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Arntz WE, Brey T, Gallardo VA (1994) Antarctic zoobenthos. Oceanogr Mar Biol Ann Rev 32:241–304
Google Scholar
Arrigo KR, van Dijken GL (2011) Secular trends in Arctic Ocean net primary production. J Geophys Res 116: https://doi.org/10.1029/2011JC007151
Arrigo KR, van Dijken GL, Bushinsky S (2008) Primary production in the Southern Ocean, 1997-2006. J Geophys Res: 113 https://doi.org/10.1029/2007JC004551
Ashton G, Morley SA, Barnes DKA, Clark MS, Peck LS (2017) Warming by 1 °C drives species and assemblage level responses in Antarctica’s marine shallows. Cur Biol 27:R1-8
Article
Google Scholar
Barnes DKA (2015) Antarctic sea ice losses drive gains in benthic carbon drawdown. Cur Biol 25:R789–R790
CAS
Article
Google Scholar
Barnes DKA (2017) Polar zoobenthos blue carbon storage increases with sea ice losses, because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows. Glob Change Biol 23:5083–5091. https://doi.org/10.1111/gcb.13772
Article
Google Scholar
Barnes DKA, Fleming A, Sands CJ, Quartino ML, Deregibus D (2018) Icebergs, sea ice, blue carbon, and Antarctic climate feedbacks. Phil Trans Roy Soc Lond A 376:20170176. https://doi.org/10.1098/rsta.2017.0176
Article
Google Scholar
Barnes DKA, Sands CJ, Cook A, Howard F, Roman Gonzalez A, Muñoz-Ramirez C, Retallick K, Scourse J, Van Landeghem K, Zwerschke N (2020) Blue carbon gains from glacial retreat along Antarctic fjords: what should we expect? Glob Change Biol 26:2750–2755. https://doi.org/10.1111/GCB.15055
Article
Google Scholar
Bax N, Sands CJ, Gogarty B, Downey RV, Moreau CV, Moreno B, Held C, Paulsen ML, McGee J, Haward M, Barnes DKA (2021) Perspective: increasing blue carbon around Antarctica is an ecosystem service of considerable societal and economic value worth protecting. Glob Change Biol 27:5–12
Article
Google Scholar
Bax N, Moreno B, Moreau C, Barnes DKA, Paulsen M, Held C, Downey R, Sands C, Souster T (2019) Carbon storage by Kerguelen zoobenthos as a negative feedback on climate change. In: D Welsford, J Dell, G Duhamel; Eds). The Kerguelen Plateau: Marine Ecosystems and Fisheries. Proc Sec Symp Aust Antarc Div 119–123
Bodungen B, v, Smetacek VS, Tilzer MM, Zeitzschel B, (1986) Primary production and sedimentation during spring in the Antarctic Peninsula region. Deep Sea Research Part a, Oceanographic Research Papers 33(2):177–194. https://doi.org/10.1016/0198-0149(86)90117-2
Article
Google Scholar
Brasier M, Barnes DKA, Bax N, Brandt A, Christianson AB, Constable AJ, Downey R, Figuerola B, Griffiths H, Gutt J, Lockhart S, Morley SA, Post AL, Van de Putte A, Saeedi H, Stark J, Sumner M, Waller C (2021) Responses of Southern Ocean seafloor habitats and communities to global and local drivers of change. Frontiers Mar Sci 30 https://doi.org/10.3389/fmars.2021.622721
Brey T, Gerdes D (1998) High Antarctic macrobenthic community production. J Exp Mar Biol Ecol 231:191–200
Brooks CM, Chown SL, Douglass LL, Raymond BP, Shaw JD, Sylvester ZT, Torrens CL (2020) Progress towards a representative network of Southern Ocean protected areas. PLoS ONE 15(4):e0231361. https://doi.org/10.1371/journal.pone.0231361
CAS
Article
PubMed
PubMed Central
Google Scholar
Bruchhausen PM, Raymond JA, Jacobs SS, DeVries AL, Thorndike EM, DeWitt HH (1979) Fish, crustaceans, and the sea floor under the Ross Ice Shelf. Science 203:449–451
CAS
Article
Google Scholar
Cape MR, Vernet M, Kahru M, Spreen, G (2014) Polynya dynamics drive primary production in the Larsen A and B embayments following ice shelf collapse. J Geophys Res 119:572–594
Cavanagh RD, Melbourne-Thomas J, Grant SM, Barnes DKA, Hughes KA, Halfter S, Meredith MP, Murphy EJ, Trebilco R, Hill SL (2021) Future risk for southern ocean ecosystem services under climate change. Frontiers Mar Sci 7:615214. https://doi.org/10.3389/fmars.2020.615214
Article
Google Scholar
Clark GF, Stark JS, Johnston EL, Runcie JW, Goldsworthy PM, Raymond B, Riddle MJ (2013) Light-driven tipping points in polar ecosystems. Glob Change Biol 19:3749–3761
Article
Google Scholar
Cook AJ, Holland PR, Meredith MP, Murray T, Luckman A, Vaughan DG (2016) Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353:283–286. https://doi.org/10.1126/science.aae0017
CAS
Article
PubMed
Google Scholar
Duarte CM, Caraco MJJ, N, (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8
CAS
Article
Google Scholar
Duprat LPAM, Bigg GR, Wilton DJ (2016) Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs. Nat Geosci 9:219–221. https://doi.org/10.1038/ngeo2633
CAS
Article
Google Scholar
Eidam EF, Nittrouer CA, Lundesgaard Ø, Homolka KK, Smith CR (2019) Variability of sediment accumulation rates in an Antarctic Fjord. Geophysical Res Let 46:271–280. https://doi.org/10.1029/2019GL084499
Article
Google Scholar
Fabry VJ, McClintock JB, Mathis JT, Grebmeier JM (2009) Ocean acidification at high latitudes: the Bellwether. Oceanography 22:160–171
Article
Google Scholar
Figuerola B, Hancock AM, Bax N, Cummings VJ, Downey R, Griffiths HJ, Smith J, Stark JS (2021) A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the Southern Ocean. Frontiers Mar Sci 8 https://doi.org/10.3389/fmars.2021.584445
Filinger L, Janussen D, Lundälv T, Richter C (2013) Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Cur Biol 23:1330–1334. https://doi.org/10.1016/j.cub.2013.05.051
CAS
Article
Google Scholar
Grange LJ, Smith CR (2013) Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity. PLoS ONE 8:e77917. https://doi.org/10.1371/journal.pone.0077917
CAS
Article
PubMed
PubMed Central
Google Scholar
Griffiths HJ, Anker P, Linse K, Maxwell J, Post AL, Stevens C, Tulaczyk S, Smith JA (2021) Breaking all the rules: the first recorded hard substrate sessile benthic community far beneath an Antarctic ice shelf. Frontiers Mar Sci 8. https://doi.org/10.3389/fmars.2021.642040
Gutt J (2001) On the direct impact of ice on marine benthic communities, a review. Polar Biol 24:553–564. https://doi.org/10.1007/s003000100262
Article
Google Scholar
Gutt J, Bertler N, Bracegirdle TJ, Buschmann A, Comiso J, Hosie G, Isla E, Schloss IR, Smith CR, Xavier TJ, JC, (2015) The Southern Ocean ecosystem under multiple climate change stresses - an integrated circumpolar assessment. Glob Change Biol 21:1434–1453. https://doi.org/10.1111/gcb.12794
Article
Google Scholar
Hancock AM, King CK, Stark JS, McMinn A, Davidson AT (2020) Effects of ocean acidification on Antarctic marine organisms: a meta-analysis. Ecol Evol 10:4495–4514
Article
Google Scholar
Henley SF, Cavan EL, Fawcett SE, Kerr R, Monteiro T, Sherrell RM, Bowie AR, Boyd PW, Barnes DKA, Schloss IR, Marshall T, Flynn R, Smith S (2020) Changing biogeochemistry of the Southern Ocean and its ecosystem implications. Frontiers Mar Sci 7:581. https://doi.org/10.3389/fmars.2020.00581
Article
Google Scholar
Hoegh-Guldbergh O, Northrop E, Lubchenco J (2019) The ocean is key to achieving climate and societal goals. Science 365:1372–1374. https://doi.org/10.1126/science.aaz4390
CAS
Article
Google Scholar
Housset JM, Girardin MP, Baconnet M, Carcaillet C, Bergeron Y (2015) Unexpected warming induced growth decline in Thuja occidentalis at its northern limits in North America. J Biogeogr 42:1233–1245. https://doi.org/10.1111/jbi.12508
Article
Google Scholar
Hughes KA, Pescott OL, Peyton J, Adriaens T, Cottier-Cook EJ, Key G, Rabitsch W, Tricarico E, Barnes DKA, Baxter N, Belchier M, Blake D, Convey P, Dawson W, Frohlich D, Gardiner LM, González-Moreno P, James R, Malumphy C, Martin S, Martinou AF, Minchin D, Monaco A, Moore N, Morley SA, Ross K, Shanklin J, Turvey K, Vaughan D, Vaux AGC, Werenkraut V, Winfield IJ, Roy HE (2020) Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. Glob Change Biol 2020:1–15
Google Scholar
Ingels J, Aronson RB, Smith CR, Baco A, Bik HM, Blake J, Brandt A, Cape M, Demaster D, Dolan E, Domack E, Fire S, Geisz H, Gigliotti M, Griffiths H, Halanych KM, Havermans C, Huettmann F, Ishman S, Kranz SA, Leventer A, Mahon AR, McClintock J, McCormick ML, Mitchell BG, Murray AE, Peck L, Rogers A, Shoplock B, Smith KE, Steffel B, Stukel MR, Sweetman AK, Taylor M, Thurber AR, Truffer M, van de Putte A, Vanreusel A, Zamora-Duran MA (2021) Antarctic ecosystem responses following ice-shelf collapse and iceberg calving: science review and future research. WIREs Clim Change 12:e682
Article
Google Scholar
IPCC (2019) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, E Poloczanska, K Mintenbeck, A Alegría, M Nicolai, A Okem, J Petzold, B Rama, NM Weyer (eds.)]
Isla E, Gerdes D, Palanques A, Gili J-M, Arntz WE, König-Langlo G (2009) Downward particle fluxes, wind and a phytoplankton bloom over a polar continental shelf: a stormy impulse for the biological pump. Mar Geo 259:59–72
CAS
Article
Google Scholar
Kirchman DL, Morán XA, Ducklow H (2009) Microbial growth in the polar oceans - role of temperature and potential impact of climate change. Nat Rev Microbiol 7:451–459. https://doi.org/10.1038/nrmicro2115
CAS
Article
PubMed
Google Scholar
Koch M, Bowes G, Ross C, Zhang X-H (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Change Biol 19:103–132
Article
Google Scholar
Kortsch S, Primicerio R, Beuchel F, Renaud PE, Rodrigues J, Lønne OJ, Gulliksen B (2012) Climate-driven regime shifts in Arctic marine benthos. PNAS 109:14052–14057
CAS
Article
Google Scholar
Krause-Jensen D, Duarte CM (2016) Substantial role of macroalgae in marine carbon sequestration. Nat Geosci 9:737–742
CAS
Article
Google Scholar
Krumhansl K, Scheibling R (2012) Production and fate of kelp detritus. Mar Ecol Prog Ser 467:281–302
Article
Google Scholar
Legrand M, Preunkert S, Jourdain B, Guilhermet J, Fan X, Alekhina I, Petit JR (2013) Water-soluble organic carbon in snow and ice deposited at Alpine, Greenland, and Antarctic sites: a critical review of available data and their atmospheric relevance. Climate past 9:2195–2211
Article
Google Scholar
Littlepage JL, Pearse JS (1962) Biological and oceanographic observations under an Antarctic ice shelf. Science 137:679–768
CAS
Article
Google Scholar
Lundesgaard Ø, Powell B, Merrifield M, Hahn-Woernle L, Winsor P (2019) Response of an Antarctic Peninsula fjord to summer katabatic wind events. J Phys Oceanogr 49:1485–1502 https://doi.org/10.1175/JPO-D-18-0119.1
Massom R, Reid P, Stammerjohn S, Raymond B, Fraser A, Ushio S (2013) Change and variability in East Antarctic sea ice seasonality, 1979/80–2009/10. PLoS ONE 8:e64756
Article
Google Scholar
McNeil BI, Matear RJ (2008) Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. PNAS 105:18860–18864
CAS
Article
Google Scholar
Montseny M, Linares C, Viladrich N, Olariaga A, Carreras M, Palomeras N et al (2019) First attempts towards the restoration of gorgonian populations on the Mediterranean continental shelf. Aquat Conserv Mar Freshw Ecosyst 29:1278–1284. https://doi.org/10.1002/aqc.3118
Article
Google Scholar
Mopper K, Zhou X, Kieber RJ, Kieber DJ, Sikorski RJ, Jones RD (1991) Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353:60–62
CAS
Article
Google Scholar
Morley S, Doris A, Barnes DKA, Cárdenas CA, Cotté C, Gutt J, Henley SF, Höfer J, Hughes KA, Martin SM, Moffat C, Raphael M, Stammerjohn SE, Suckling CC, Tulloch VJD, Waller CL, Constable AJ (2020) Global Drivers on Southern Ocean Ecosystems: Changing Physical Environments and Anthropogenic Pressures in an Earth System. Front Mar Sci 7 https://doi.org/10.3389/fmars.2020.547188
Mueller RD, Hatterman T, Howard S, Padman L (2018) Tidal influences on a future evolution of the Filchner-Ronne Ice Shelf cavity in the Weddell Sea, Antarctica. Cryosphere 12:453–476
Article
Google Scholar
Nahlik AM, Fennessy MS (2016) Carbon storage in US wetlands. Nat Comms 7:13835 https://doi.org/10.1038/ncomms13835
Orr J, Fabry V, Aumont O, Bopp L, Doney S, Feely R, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key R, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar R, Plattner G-K, Rodgers K, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686. https://doi.org/10.1038/nature04095
CAS
Article
PubMed
Google Scholar
Peck LS, Barnes DKA, Cook AJ, Fleming AH, Clarke A (2010) Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica. Glob Change Biol 16:2614–2623. https://doi.org/10.1111/j.1365-2486.2009.02071.x
Article
Google Scholar
Pineda Metz SEA, Gerdes D, Richter C (2020) Benthic fauna declined on a whitening Antarctic continental shelf. Nat Commun 11:2226. https://doi.org/10.1038/s41467-020-16093-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Pinkerton MH, Bradford-Grieve J, Bowden DA (2010) Benthos: trophic modelling of the Ross Sea. Supporting Document to CCAMLR Science 17:1–31
Google Scholar
Pörtner HO, Scholes RJ, Agard J, Archer E, Arneth A, Bai X, Barnes DKA, Burrows M, Chan L, Cheung WL, Diamond S, Donatti C, Duarte C, Eisenhauer N, Foden W, Gasalla MA, Handa C, Hickler T, Hoegh-Guldberg O, Ichii K, Jacob U, Insarov G, Kiessling W, Leadley P, Leemans R, Levin L, Lim M, Maharaj S, Managi S, Marquet PA, McElwee P, Midgley G, Oberdorff T, Obura D, Osman E, Pandit R, Pascual U, Pires APF, Popp A, Reyes-García V, Sankaran M, Settele J, Shin YJ, Sintayehu DW, Smith P, Steiner N, Strassburg B, Sukumar R, Trisos C, Val AL, Wu J, Aldrian E, Parmesan C, Pichs-Madruga R, Roberts DC, Rogers AD, Díaz S, Fischer M, Hashimoto S, Lavorel S, Wu N, Ngo HT (2021) Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change; IPBES secretariat, Bonn, Germanyhttps://doi.org/10.5281/zenodo.4659158
Post AL, Galton-Fenzi BK, Riddle MJ, Herraiz-Borreguero L, O’Brien PE, Hemer MA, McMinn A, Rasch D, Craven M (2014) Modern sedimentation, circulation and life beneath the Amery Ice Shelf, East Antarctica. Cont Shelf Res 74:77–87. https://doi.org/10.1016/j.csr.2013.10.010
Article
Google Scholar
Post AL, Lavoie C, Domack EW, Leventer A, Shevenell A, Fraser AD, NBP 14–02 Science Team (2017) Environmental drivers of benthic communities and habitat heterogeneity on an East Antarctic shelf. Antarct Sci 29:17–32
Article
Google Scholar
Reigstad M, Carroll J, Slagstad D, Ellingsen I, Wassmann P (2011) Intra-regional comparison of productivity, carbon flux and ecosystem composition within the northern Barents Sea. Progr Oceanogr 90:33–46 https://doi.org/10.1016/j.pocean.2011.02.005
Riddle MJ, Craven M, Goldsworthy PM, Carsey F (2007) A diverse benthic assemblage 100 km from open water under the Amery Ice Shelf, Antarctica. Paleoceanography 22:PA1204 https://doi.org/10.1029/2006pa001327
Rogers AD, Frinault BAV, Barnes DKA, Bindoff NL, Downie R, Ducklow HW, Friedlaender AS, Hart T, Hill SL, Hofmann EE, Linse K, McMahon CR, Murphy EJ, Pakhomov EA, Reygondeau G, Staniland IJ, Wolf-Gladrow DA, Wright R (2020) Antarctic futures: an assessment of climate driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Ann Rev Mar Sci 12:87–120. https://doi.org/10.1146/annurevmarine-010419-011028
CAS
Article
PubMed
Google Scholar
Rossi S, Rizzo L (2020) Marine Animal Forests as Carbon Immobilizers or Why We Should Preserve These Three-Dimensional Alive Structures. p.333-400
Saban JM, Chapman MA, Taylor G (2018) FACE facts hold for multiple generations, evidence from natural CO2 springs. Glob Change Biol 25:1–11. https://doi.org/10.1111/gcb.14437
Article
Google Scholar
Sahade R, Lagger C, Torre L, Momo F, Monien P, Schloss I, Barnes DKA, Servetto N, Tarantelli S, Tatián M, Zamboni N, Abele D (2015) Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci Adv 1e:1500050
Article
Google Scholar
Smale DA, Brown KM, Barnes DKA, Fraser KPP, Clarke A (2008) Ice scour disturbance in Antarctic waters. Science 321:371. https://doi.org/10.1126/science.1158647
CAS
Article
PubMed
Google Scholar
Smith RW, Bianchi TS, Allison M, Savage C, Galy V (2015) High rates of organic carbon burial in fjord sediments globally. Nat Geosci 8(6):450–453. https://doi.org/10.1038/NGEO2421
CAS
Article
Google Scholar
Souster TA, Barnes DKA, Hopkins J (2020) Variation in zoobenthic blue carbon in the Arctic’s Barents Sea shelf sediments. Phil Trans Roy Soc: A 378(2181):20190362
CAS
Article
Google Scholar
Thomas DN (2004) Frozen oceans: the floating world of pack ice. Natural History Museum, London, 2004. Hardback
Thrush SF, Dayton PK (2002) Disturbance to marine benthic habitats by trawling and dredging: implications for marine biodiversity. Ann Rev Ecol Syst. 33(1):449–473
Article
Google Scholar
Trivelpiece WZ, Hinke JT, Miller AK, Reiss CS, Trivelpiece SG, Watters GM (2011) Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. PNAS 108:7625–7628. https://doi.org/10.1073/pnas.1016560108
Article
PubMed
PubMed Central
Google Scholar
Turner J, Comiso J (2017) Solve Antarctica’s sea ice puzzle. Nature 547:275–277
CAS
Article
Google Scholar
Waller CL, Griffiths HJ, Waluda CM, Thorpe SE, Loaiza I, Moreno B, Pacherres OC, Hughes KA (2017) Microplastics in the Antarctic marine system: an emerging area of research. Sci Tot Environ 598:220–227. https://doi.org/10.1016/j.scitotenv.2017.03.283
CAS
Article
Google Scholar
Wassmann P, Reigstad M (2011) Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography 24:220–231
Article
Google Scholar
Young CS, Gobler CJ (2016) Ocean Acidification accelerates the growth of two bloom-forming macroalgae. PLoS ONE 11:e0155152
Article
Google Scholar
Zwerschke N, Morley SA, Peck LS, Barnes DKA (2021) Can Antarctica’s shallow zoobenthos ‘bounce back’ from iceberg scouring impacts driven by climate change? Glob Change Biol 27:1–9. https://doi.org/10.1111/gcb.15617
Article
Google Scholar