The presence of a conodont element within the Famennian coelacanth is not the result of any post-mortem process, as it is clearly embedded within the phosphatic mass occurring between the part and counterpart of the preserved fish. Therefore, its occurrence must reflect feeding on the conodont animal by the coelacanth. This is the first direct evidence of feeding on conodont animals by early coelacanth fishes, and also one of the few evidences of feeding on these animals in general. Previously, conodonts, belonging to two multielement taxa (Oulodus and Icriodus), have been found within the gut region of a palaeoniscoid fish from the Upper Devonian Gogo Formation in Australia by Nicoll (1977). In the same formation, Choo et al. (2009) found a basal actinopterygian fish Gogosardina with prioniodinid conodont elements preserved in its branchial regions. Williams (1990) noted conodont elements inside 9% of all specimens of Cladoselache sharks from the Famennian Cleveland Shale of Ohio. Conodont elements have also been found within the enigmatic metazoan called Typhloesus wellsi from the Carboniferous Bear Gulch Limestone in Montana (Conway Morris 1990).
Thus, the find not only supports the earlier notions that conodont animals, the extinct chordates (Purnell et al. 1995) which were particularly abundant in the Late Devonian seas (Dzik 2002), were ideal prey for various Devonian fishes, but also expands our knowledge about the diet of the Late Devonian coelacanths. However, the presence of only a single conodont element within the body cavity of a coelacanth does not provide any clue as to whether the fish actively hunted living conodont animals or scavenged carcasses lying on the seafloor. It is known that the living species Latimeria chalumnae is a predominantly piscivorous benthic or epibenthic feeder (Uyeno and Tsutsumi 1991). The stomach contents preserved in some fossil coelacanths, mainly consisting of arthropods (Lund and Lund 1984, 1985; Clement 2005), are also suggestive of feeding principally on benthic animals. Thus, we cannot exclude that the Late Devonian coelacanth from Kowala was a benthic scavenger. However, we must also bear in mind that early coelacanth species were morphologically very diverse (Friedman and Coates 2006; Wendruff and Wilson 2012) and thus their niche partitioning, along with feeding preferences, certainly varied as well.
Interestingly, the same lower Famennian, coelacanth-bearing deposits contain numerous fish coprolites. Recently, a coprolite containing a single conodont element has been found in the Kowala quarry by Zatoń and Rakociński (2014). Earlier, Dzik (2002) illustrated conodont elements aggregated together (probably representing coprolite contents) from the basal Famennian of Płucki, Holy Cross Mountains. Conodonts enclosed within phosphatic coprolites have also been noted in the lower Famennian Cleveland Shale in OH, USA by Williams (1990).
The new coprolite reported here contains several platform and conical conodont elements. Of course, identification of a producer based on the coprolite itself is always speculative. However, it is possible that at least some of the coprolites reported earlier by Zatoń and Rakociński (2014) and that presented here may have been produced by coelacanth fish, the disarticulated remains of which are common in the deposits investigated (Zatoń and Broda 2015). Apart from the supporting evidence in the form of a conodont element preserved within a coelacanth fish shown here, the spiral internal organization of the coprolite may be relevant (Fig. 1d). It is known that coelacanth fishes possess a spiral gut valve (Thoney and Hargis 1991). Moreover, the very small sizes of the lower Famennian coprolites from Kowala, which range only from 6 to 18 mm in length (Zatoń and Rakociński 2014), are comparable to the size of the coelacanth discussed.
The relative diversity of fishes from the lower Famennian (crepida conodont Zone) deposits may indicate coelacanths as producers of at least some of the coprolites. Other fish remains are known in these deposits. Sharks and acanthodians are known from their teeth and scales (Ginter 2002) and ganoid fishes as scales inside coprolites (Zatoń and Rakociński 2014). However, the coelacanth remains are the most numerous fossils occurring in these deposits. To date, incomplete coelacanth remains comprise 23 specimens represented either by isolated opercula or associated cranial elements (Zatoń and Broda 2015). Other coelacanth remains (Diplocercides sp.) have also been reported from deposits of the same conodont zone in the Wietrznia locality (Szrek 2007). Thus, it seems that the lower Famennian crepida conodont Zone deposits are particularly rich in coelacanths.