Skip to main content
Log in

Detecting the potential sympatric range and niche divergence between Asian endemic ungulates of Procapra

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Species distribution modeling (SDM) is increasingly used to reveal biogeographical relationships, for example the sympatric range for species coexistence, and fundamental questions about niche evolution between related species. We explored the sympatric ranges between three Procapra species (Procapra przewalskii, Procapra Picticaudata, and Procapra gutturosa) via two methods of defining the study region (method 1, in which models were developed in a larger region including the whole geographic range of Procapra, and method 2 in which a smaller region surrounding focal species’ localities was used and then projected to the larger region). We also quantified environmental niche divergence between gazelles across the whole range in Procapra. Models for gazelles generally performed well. Compared with method 2, method 1 led to larger predicted areas with high suitability and was less concentrated around known localities. Clamping, which deals with variables outside the training range, varied between gazelles and occurred primarily in regions unsuitable for respective species. For all gazelle pairs, models revealed an overlap zone where more than one species should occur, while the estimates varied between the two methods. Moreover, we found that the niche overlap was closely associated with geographic distance but not with phylogenetic distance among gazelles. Our findings indicate that SDM is a useful tool for testing whether related species tend to be in sympatry at large scales, with method 1 leading to more realistic predictions for Procapra. This study provides evidence of a distinct niche divergence among related species and supports the theory that ecological speciation plays a significant role in lineage generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acevedo P, Jiménez-Valverde A, Lobo JM, Real R (2012) Delimiting the geographical background in species distribution modelling. Journal of Biogeography. doi:10.1111/j.1365-2699.2012.02713.x

  • Acevedo P, Ward AI, Real R, Smith GC (2010) Assessing biogeographical relationships of ecologically related species using favourability functions: a case study on British deer. Divers Distrib 16:515–528

    Article  Google Scholar 

  • Anderson RP, Peterson AT, Gomez-Laverde M (2002) Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98:3–16

    Article  Google Scholar 

  • Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37:1378–1393

    Article  Google Scholar 

  • Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16:743–753

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Bahn V, McGill BJ (2007) Can niche-based distribution models outperform spatial interpolation? Glob Ecol Biogeogr 16:733–742

    Article  Google Scholar 

  • Barton N (2001) The role of hybridization in evolution. Mol Ecol 10:551–558

    Article  PubMed  CAS  Google Scholar 

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Modell 222:1810–1819

    Article  Google Scholar 

  • Braunisch V, Suchant R (2010) Predicting species distributions based on incomplete survey data: the trade-off between precision and scale. Ecography 33:826–840

    Article  Google Scholar 

  • Buckley LB, Davies TJ, Ackerly DD et al (2010) Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proc R Soc B-Biol Sci 277:2131–2138

    Article  Google Scholar 

  • Chefaoui RM, Lobo JM (2008) Assessing the effects of pseudo-absences on predictive distribution model performance. Ecol Modell 210:478–486

    Article  Google Scholar 

  • Clark EL, Munkhbat J, Dulamtseren S, Baillie JEM, Batsaikhan N, King SRB, Samiya R, Stubbe M (2006) Summary conservation action plans for Mongolian mammals. Zoological Society of London, London

    Google Scholar 

  • Costa GC, Schlupp I (2010) Biogeography of the Amazon molly: ecological niche and range limits of an asexual hybrid species. Glob Ecol Biogeogr 19:442–451

    Google Scholar 

  • Doebeli M, Dieckmann U (2003) Speciation along environmental gradients. Nature 421:259–264

    Article  PubMed  CAS  Google Scholar 

  • Duncan RP, Cassey P, Blackburn TM (2009) Do climate envelope models transfer? A manipulative test using dung beetle introductions. Proc R Soc B-Biol Sci 276:1449–1457

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • GLC (2003) Global Land Cover 2000 database. European Commission, Joint Research Centre. <http://gem.jrc.ec.europa.eu/products/glc2000/glc2000.php>. Cited 10 Oct 2009

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hu J, Hu H, Jiang Z (2010a) The impacts of climate change on the wintering distribution of an endangered migratory bird. Oecologia 164:555–565

    Article  PubMed  Google Scholar 

  • Hu J, Jiang Z (2010) Predicting the potential distribution of the endangered Przewalski’s gazelle. J Zool 282:54–63

    Article  Google Scholar 

  • Hu J, Jiang Z (2011) Climate change hastens the conservation urgency of an endangered ungulate. PLoS One 6:e22873

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Ping X, Cai J, Li Z, Li C, Jiang Z (2010b) Do local communities support the conservation of endangered Przewalski’s gazelle? Eur J Wildl Res 56:551–560

    Article  Google Scholar 

  • IUCN SSC Antelope Specialist Group (2008) Procapra przewalskii. In: IUCN 2010. IUCN Red List of Threatened Species. Version 2010.4. Available at: http://www.iucnredlist.org/. Accessed 20 Dec 2010

  • Jiang Z (2004) Przewalski’s Gazelle. China Forestry Publishing House, Beijing

    Google Scholar 

  • Lawler JJ, Shafer SL, White D, Kareiva P, Maurer EP, Blaustein AR, Bartlein PJ (2009) Projected climate-induced faunal change in the Western Hemisphere. Ecology 90:588–597

    Article  PubMed  Google Scholar 

  • Lei R, Jiang Z, Hu Z, Yang W (2004) Taxonomic status of Procapra and the classification of Chinese antelopes and gazelles. Acta Zootaxon Sin 29:622–627

    Google Scholar 

  • Li Z, Jiang Z, Beauchamp G (2010) Nonrandom mixing between groups of Przewalski’s gazelle and Tibetan gazelle. J Mammal 91:674–680

    Article  Google Scholar 

  • Li Z, Jiang Z, Li C (2008) Dietary overlap of Przewalski’s gazelle, Tibetan gazelle, and Tibetan sheep on the Qinghai-Tibet Plateau. J Wildl Manage 72:944–948

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Lomolino M, Riddle B, Brown J (2006) Biogeography. Sinauer Associates, Sunderland

    Google Scholar 

  • Mallon DP (2008) Procapra gutturosa. In: IUCN Red List of Threatened Species, IUCN 2010 Version 2010.4. Available at: http://www.iucnredlist.org/. Accessed 21 Dec 2010

  • Mallon DP, Bhatnagar YV (2008) Procapra picticaudata. In: IUCN Red List of Threatened Species, IUCN 2010. Version 2010.4. Available at: http://www.iucnredlist.org/. Accessed 21 Dec 2010

  • Mallon DP, Jiang Z (2009) Grazers on the plains: challenges and prospects for large herbivores in Central Asia. J Appl Ecol 46:516–519

    Article  Google Scholar 

  • Martínez-Freiría F, Sillero N, Lizana M, Brito JC (2008) GIS-based niche models identify environmental correlates sustaining a contact zone between three species of European vipers. Divers Distrib 14:452–461

    Article  Google Scholar 

  • Olson KA, Fuller TK, Mueller T, Murray MG, Nicolson C, Odonkhuu D, Bolortsetseg S, Schaller GB (2010) Annual movements of Mongolian gazelles: nomads in the Eastern Steppe. J Arid Environ 74:1435–1442

    Article  Google Scholar 

  • Orr MR, Smith TB (1998) Ecology and speciation. Trends Ecol Evol 13:502–506

    Article  PubMed  CAS  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267

    Article  PubMed  CAS  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Putman R (1996) Competition and resource partitioning in temperate ungulate assemblies. Chapman & Hall, London

    Book  Google Scholar 

  • Real R, Barbosa AM, Rodríguez A, García FJ, Vargas JM, Palomo LJ, Delibes M (2009) Conservation biogeography of ecologically interacting species: the case of the Iberian lynx and the European rabbit. Divers Distrib 15:390–400

    Article  Google Scholar 

  • Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352

    Article  Google Scholar 

  • Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild. BioScience 52:891–904

    Article  Google Scholar 

  • Schaller G (1998) Wildlife of the Tibetan steppe. University of Chicago Press, Chicago

    Google Scholar 

  • Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–741

    Article  PubMed  CAS  Google Scholar 

  • Svenning JC, Normand S, Kageyama M (2008) Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J Ecol 96:1117–1127

    Article  Google Scholar 

  • Turelli M, Barton NH, Coyne JA (2001) Theory and speciation. Trends Ecol Evol 16:330–343

    Article  PubMed  Google Scholar 

  • Turner M, Gardner R, O’Neill R (2001) Landscape ecology in theory and practice: pattern and process. Springer-Verlag, New York

    Google Scholar 

  • USGS (2009) HYDRO1k elevation derivative database. <http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/hydro>. Cited December 2008

  • Van Horn B (2002) Approaches to habitat modeling: the tensions between pattern and process and between specificity and generality. In: Scott JM, Heglund PJ, Haufler JB et al (eds) Predicting species occurrences: issues of scale and accuracy. Island Press, Washington, pp 63–72

    Google Scholar 

  • VanDerWal J, Shoo LP, Graham C, William SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Modell 220:589–594

    Article  Google Scholar 

  • Wake DB, Hadly EA, Ackerly DD (2009) Biogeography, changing climates, and niche evolution. Proc Natl Acad Sci USA 106:19631–19636

    Article  PubMed  CAS  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883

    Article  PubMed  Google Scholar 

  • Wiens J (2002) Predicting species occurrences: progress, problems, and prospects. In: Scott JM, Heglund PJ, Haufler JB et al (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, pp 739–749

    Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Sciences Foundation of China (No. 31070469), the Knowledge Innovation Program of the Chinese Academy of Sciences (the Field Front Project, No. Y1B302100; the Key Program, No. KSCX2-EW-Z-4), and the Science and Technology Supporting Project of MOST (No. 2008BAC39B04). We are grateful to Steven Phillips for adapting the Maxent application several times. We thank Miguel B. Araújo, Yang Liu, Jing Chen, and Zhenhua Luo for their comments on earlier drafts and Anne Bjorkman for improving the English language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junhua Hu or Zhigang Jiang.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Jiang, Z. Detecting the potential sympatric range and niche divergence between Asian endemic ungulates of Procapra . Naturwissenschaften 99, 553–565 (2012). https://doi.org/10.1007/s00114-012-0933-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-012-0933-1

Keywords

Navigation