Skip to main content
Log in

Torpor and activity in a free-ranging tropical bat: implications for the distribution and conservation of mammals?

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Bats are most diverse in the tropics, but there are no quantitative data on torpor use for energy conservation by any tropical bat in the wild. We examined the thermal biology, activity patterns and torpor use of two tree-roosting long-eared bats (Nyctophilus geoffroyi, 7.8 g) in tropical northern Australia in winter using temperature telemetry. Bats commenced activity about 20 min after sunset, ended activity about 2.5 h before sunrise and entered torpor everyday in the early morning even when minimum ambient temperatures (T a) were as high as 23°C. On average, bats remained torpid for almost 5 h, mean minimum skin temperature (T skin) measured was 22.8 ± 0.1°C and daily T skin minima were correlated with T a. Our study shows that even in the tropics, torpor is frequently employed by bats, suggesting that worldwide most bat species are heterothermic and use torpor for energy conservation. We propose that the ability of employing torpor and the resulting highly plastic energy requirements may partially explain why these small insectivorous bats can inhabit almost the entire Australian continent despite vastly different climatic and likely trophic conditions. Reduced energy requirements also may permit survival in degraded or modified habitats, reduce the need for foraging and reduce exposure to predators. Thus, the ability to employ torpor may be one important reason for why most Australian bats and other heterothermic mammals have not gone extinct whereas many obligatory homeothermic mammals that cannot employ torpor and have high energy and foraging requirements have suffered high rates of extinctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

T a :

Ambient temperature

T b :

Body temperature

T skin :

Skin temperature

TNZ:

Thermo-neutral zone

References

  • Barclay RMR, Kalcounis MC, Crampton LH, Stefan C, Vonhof MJ, Wilkinson L, Brigham RM (1996) Can external radiotransmitters be used to assess body temperature and torpor in bats? J Mammal 77:1102–1106

    Article  Google Scholar 

  • Barclay RMR, Lausen CL, Hollis L (2001) What’s hot and what’s not: defining torpor in free-ranging birds and mammals. Can J Zool 79:1885–1890

    Article  Google Scholar 

  • Bieber C, Ruf T (2009) Summer dormancy in edible dormice (Glis glis) without energetic constraints. Naturwissenschaften 96:165–171

    Article  PubMed  CAS  Google Scholar 

  • Brice PH, Grigg GC, Beard LA, Donovan JA (2002) Patterns of activity and inactivity in echidnas (Tachyglossus aculeatus) free-ranging in a hot dry climate: correlates with ambient temperature, time of day and season. Aust J Zool 50:461–475

    Article  Google Scholar 

  • Canale CI, Henry P-Y (2010) Adaptive phenotypic plasticity and resilience of vertebrates to increasing climatic unpredictability. Clim Res 43:135–147

    Article  Google Scholar 

  • Cory Toussaint D, McKechnie AE, van der Merwe M (2010) Heterothermy in free-ranging male Egyptian free-tailed bats (Tadarida aegyptiaca) in a subtropical climate. Mamm Biol 75:466–470

    Article  Google Scholar 

  • Dausmann KH (2008) Hypometabolism in primates: torpor and hibernation. In: Lovegrove BG, McKechnie AE (eds) Hypometabolism in animals: torpor, hibernation and cryobiology. 13th International Hibernation Symposium. University of KwaZulu-Natal, Pietermaritzburg, pp 327–336

    Google Scholar 

  • Dunbar MB, Brigham RM (2010) Thermoregulatory variation among populations of bats along a latitudinal gradient. J Comp Physiol B 180:885–893

    Article  PubMed  Google Scholar 

  • Fenton MB, Rautenbach IL, Smith SE, Swanepoel CM, Grosell J, van Jaarsveld J (1994) Raptors and bats: threats and opportunities. Anim Behav 48:9–18

    Article  Google Scholar 

  • Fietz J, Tataruch F, Dausmann KH, Ganzhorn JU (2003) White adipose tissue composition in the free-ranging fat-tailed dwarf lemur (Cheirogaleus medius; Primates), a tropical hibernator. J Comp Physiol B 173:1–10

    PubMed  CAS  Google Scholar 

  • Gaston KJ, Blackburn TM (1996) Conservation implications of geographic range size-body size relationships. Conserv Biol 10:638–646

    Article  Google Scholar 

  • Geiser F, Brigham RM (2000) Torpor, thermal biology, and energetics in Australian long-eared bats (Nyctophilus). J Comp Physiol B 170:153–162

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Mzilikazi N (2011) Does torpor in elephant shrews differ from that of other heterothermic mammals? J Mammal. doi:10.1644/10-MAMM-A-091.1

  • Geiser F, Turbill C (2009) Hibernation and daily torpor minimize mammalian extinctions. Naturwissenschaften 96:1235–1240

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Drury RL, Körtner G, Turbill C, Pavey CR, Brigham RM (2004) Passive rewarming from torpor in mammals and birds: energetic, ecological and evolutionary implications. In: Barnes BM, Carey HV (eds) Life in the cold: evolution, mechanisms, adaptation, and application. 12th International Hibernation Symposium. Biological papers of the University of Alaska #27. Institute of Arctic Biology, Fairbanks, pp 51–62

    Google Scholar 

  • Hallam SL, Mzilikazi N (2011) Heterothermy in the southern African hedgehog, Atelerix frontalis. J Comp Physiol B. doi:10.1007/s00360-010-0531-5

  • Hosken DJ, Withers PC (1997) Temperature regulation and metabolism of an Australian bat, Chalinolobus gouldii (Chiroptera: Vespertilionidae) when euthermic and torpid. J Comp Physiol B 167:71–80

    Google Scholar 

  • Johnson CN (2006) Australia’s mammal extinctions. Cambridge University Press, Melbourne

    Google Scholar 

  • Körtner G, Geiser F (2000) Torpor and activity patterns in free-ranging sugar gliders Petaurus breviceps (Marsupialia). Oecologia 123:350–357

    Article  Google Scholar 

  • Körtner G, Rojas AD, Geiser F (2010) Thermal biology, torpor use and activity patterns of a small diurnal marsupial from a tropical desert: sexual differences. J Comp Physiol B 180:869–876

    Article  PubMed  Google Scholar 

  • Levy O, Dayan T, Kronfeld-Schor N (2011) Adaptive thermoregulation in golden spiny mice: the influence of season and food availability on body temperature. Physiol Biochem Zool 84:175–184

    Google Scholar 

  • Liu J-N, Karasov WH (2011) Hibernation in warm hibernacula by free-ranging Formosan leaf-nosed bats, Hipposideros terasensis, in subtropical Taiwan. J Comp Physiol B 181:125–135

    Article  PubMed  Google Scholar 

  • Lovegrove BG, Genin F (2008) Torpor and hibernation in a basal placental mammal, the Lesser Hedgehog Tenrec Echinops telfairi. J Comp Physiol B 178(6):691–698

    Article  PubMed  Google Scholar 

  • Lumsden LF, Turbill C (2008) Lesser long-eared bat, Nyctophilus geoffroyi. In: van Dyck S, Strahan R (eds) The mammals of Australia. Reed New Holland, Sydney, pp 520–521

    Google Scholar 

  • Morrow G, Nicol SC (2009) Cool sex? Hibernation and reproduction overlap in the echidna. PLoS ONE 4(6):e6070. doi:10.1371/journal.pone.0006070

    Article  PubMed  Google Scholar 

  • Pavey CR, Burwell CJ, Grunwald J-E, Marshall CJ, Neuweiler G (2001) Dietary benefits of twilight foraging by the insectivorous bat Hipposideros speoris. Biotropica 33:670–681

    Google Scholar 

  • Pettigrew JD, Baker GB, Baker-Gabb D, Baverstock G, Coles R, Conole L, Churchill S, Fitzherbert K, Guppy A, Hall LS, Helman P, Nelson JE, Priddel D, Pulsford I, Richards GC, Schultz M, Tidemann CR (1986) The Australian ghost bat, Macroderma gigas at Pine Creek, Northern Territory. Macroderma 2:2–19

    Google Scholar 

  • Richards GC, Hand S, Armstrong KN, Hall LS (2008) Ghost bat, Macroderma gigas. In: van Dyck S, Strahan R (eds) The mammals of Australia. Reed New Holland, Sydney, pp 449–450

    Google Scholar 

  • Schmid J, Speakman JR (2009) Torpor and energetic consequences in free-ranging grey mouse lemurs (Microcebus murinus): a comparison of dry and wet forests. Naturwissenschaften 96:609–620

    Article  PubMed  CAS  Google Scholar 

  • Schulz M (1986) Vertebrate prey of the ghost bat, Macroderma gigas, at Pine Creek, Northern Territory. Macroderma 2:59–62

    Google Scholar 

  • Smit B, Boyles JG, Brigham RM, McKechnie AE (2011) Torpor in dark times: patterns of heterothermy are associated with the lunar cycle in a nocturnal bird. J Biol Rhythms: in press

  • Stawski C, Geiser F (2010) Fat and fed: frequent use of summer torpor in a subtropical bat. Naturwissenschaften 97:29–35

    Article  PubMed  CAS  Google Scholar 

  • Stawski C, Turbill C, Geiser F (2009) Hibernation by a free-ranging subtropical bat (Nyctophilus bifax). J Comp Physiol B 179:433–441

    Article  PubMed  Google Scholar 

  • Tidemann CR, Priddel DM, Nelson JE, Pettigrew JD (1985) Foraging behaviour of the Australian ghost bat, Macroderma gigas (Microchiroptera: Megadermatidae). Aust J Zool 33:705–713

    Article  Google Scholar 

  • Turbill C, Law BS, Geiser F (2003a) Summer torpor in a free-ranging bat from subtropical Australia. J Therm Biol 28:223–226

    Article  Google Scholar 

  • Turbill C, Körtner G, Geiser F (2003b) Natural use of torpor by a small, tree-roosting bat during summer. Physiol Biochem Zool 76:868–876

    Article  PubMed  Google Scholar 

  • Turbill C, Körtner G, Geiser F (2008) Timing of the daily temperature cycle affects the critical arousal temperature and energy expenditure of the lesser long-eared bat. J Exp Biol 211:3871–3878

    Article  PubMed  Google Scholar 

  • Vivier L, van der Merwe M (2007) The incidence of torpor in winter and summer in the Angolan free-tailed bat, Mops condylurus (Microchiroptera: Molossidae), in a subtropical environment, Mpumulanga, South Africa. Afr Zool 42:50–58

    Article  Google Scholar 

  • Willis CKR, Brigham RM (2003) Defining torpor in free-ranging bats: experimental evaluation of external temperature-sensitive radiotransmitters and the concept of active temperature. J Comp Physiol B 173:379–389

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Anais Moreau and Damian Milne for help with fieldwork and Gerhard Körtner and Eran Levin for constructive comments on the manuscript. The study was supported by grants from the University of New England to AB and CS, Bat Conservation International to CS, and the Australian Research Council to FG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Geiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiser, F., Stawski, C., Bondarenco, A. et al. Torpor and activity in a free-ranging tropical bat: implications for the distribution and conservation of mammals?. Naturwissenschaften 98, 447–452 (2011). https://doi.org/10.1007/s00114-011-0779-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-011-0779-y

Keywords

Navigation