Skip to main content
Log in

Simple relationships between the ionization energies of one-, two- and three-electron ions of consecutive elements

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The ionization energy of one-electron ions can be calculated from a well-known equation that is based on quantum mechanics and on the Bohr model, but no theoretically justified equation is available for the calculation of the ionization energies of multi-electron ions. I report here simple empirical relationships between the ionization energies of one-, two- and three-electron ions of elements whose atomic numbers are Z, Z + 1 and Z + 2. On the basis of these relationships, an equation was constructed for the calculation of the ionization energies of two- and three-electron ions (IE2el(Z) and IE3el(Z), respectively) as a function of Z only:

$${\text{IE}}_{{N{\text{el}}}} {\left( Z \right)} = \frac{{2{\left( {Z - N + 1} \right)}^{2} + 3{\left( {Z - N + 1} \right)}^{3} }}{{{\left( {N - 1} \right)}^{2} \times {\left[ {2^{2} \times 3{\left( {Z - N + 1} \right)} - 1} \right]}}} \times 2^{2} \times E_{0} {\left( H \right)}$$

where N = the number of electrons, i.e. 2 or 3. For N = 3, this equation is only valid when Z > N, being inaccurate for the neutral Li atom. Graphs of the difference between calculated and experimental values of the ionization energies as a function of Z reveal inaccurate experimental results that are impossible to detect by inspection of the ionization energy itself. On the basis of the present results, more accurate values can be predicted for these ionization energies. A striking example is the inaccuracy of the traditional handbook value of IE3el(Fe).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ancarani LU (2006) On the s-wave model of two-electron atoms. J Phys B At Mol Opt Phys 39:3309–3313

    Article  CAS  Google Scholar 

  • Barysz M, Flocke N, Karwowski J (2001) A comparison of different approximate two-component relativistic theories of many-electron systems: a case study of the ionization energies of two-electron ions. Acta Phys Pol A 99:631–641

    CAS  Google Scholar 

  • Biémont E, Frémat Y, Quinet P (1999) Ionization potentials of atoms and ions from lithium to tin (Z = 50). At Data Nucl Data Tables 71:117–146

    Article  Google Scholar 

  • Chung KT (1991) Ionization potential of the lithiumlike 1s22s states from lithium to neon. Phys Rev A 44:5421–5433

    Article  PubMed  CAS  Google Scholar 

  • Elo H (2007) A simple formula for calculating the ionization potential of two-electron ions. Naturwissenschaften 94:779–780

    Article  PubMed  CAS  Google Scholar 

  • Howard IA, March NH (2005) Towards a differential equation for the non-relativistic ground-state electron density of the He-like sequence of atomic ions. Phys Rev A 71:042501/1–042501/5

    Article  CAS  Google Scholar 

  • Huang J, Jiang G, Zhao Q (2006) Ground-state ionization potentials for lithium through neon isoelectronic sequences with Z = 37–82. Chin Phys Lett 23:69–72

    Article  CAS  Google Scholar 

  • Jorge FE, Aboul Hosn HM (2001) Gaussian basis sets for isoelectronic series of the atoms He to Ne. Chem Phys 264:255–265

    Article  CAS  Google Scholar 

  • Karasiev V, Valderrama E, Ludeña EV (2000) Analysis of various quantum mechanical and DFT energy definitions. Application to atomic isoelectronic series. J Mol Struct (Theochem) 501–502:195–206

    Article  Google Scholar 

  • Lide DR (ed) (2006) CRC handbook of chemistry and physics, 87th edn. Taylor and Francis, Boca Raton, FL (internet version 2007, available at http://www.hbcpnetbase.com)

    Google Scholar 

  • Nordling C, Österman J (2004) Physics handbook for science and engineering, 7th edn. Studentlitteratur, Lund

    Google Scholar 

  • Serra P (2006) Comment on “Towards a differential equation for the nonrelativistic ground-state electron density of the He-like sequence of atomic ions”. Phys Rev A 74:016501/1–016501/2

    Article  CAS  Google Scholar 

  • Schrödinger E (1926a) Der stetige Übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14:664–666

    Article  Google Scholar 

  • Schrödinger E (1926b) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28:1049–1070

    Article  Google Scholar 

  • Schrödinger E (1929) Die Erfassung der Quantengesetze durch kontinuierliche Funktionen. Naturwissenschaften 17:486–489

    Article  Google Scholar 

  • Schrödinger E (1935a) Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23:807–812

    Article  Google Scholar 

  • Schrödinger E (1935b) Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23:823–828

    Google Scholar 

  • Schrödinger E (1935c) Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23:844–849

    Google Scholar 

  • Tanner G, Richter K, Rost J-M (2000) The theory of two-electron atoms: between ground state and complete fragmentation. Rev Mod Phys 72:497–544

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannu Elo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elo, H. Simple relationships between the ionization energies of one-, two- and three-electron ions of consecutive elements. Naturwissenschaften 95, 399–402 (2008). https://doi.org/10.1007/s00114-007-0338-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-007-0338-8

Keywords

Navigation