Skip to main content
Log in

Electronic structures of elements according to ionization energies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The electronic structures of elements in the periodic table were analyzed using available experimental ionization energies. Two new parameters were defined to carry out the study. The first parameter—apparent nuclear charge (ANC)—quantified the overall charge of the nucleus and inner electrons observed by an outer electron during the ionization process. This parameter was utilized to define a second parameter, which presented the shielding ability of an electron against the nuclear charge. This second parameter—electron shielding effect (ESE)—provided an insight into the electronic structure of atoms. This article avoids any sort of approximation, interpolation or extrapolation. First experimental ionization energies were used to obtain the two aforementioned parameters. The second parameter (ESE) was then graphed against the electron number of each element, and was used to read the corresponding electronic structure. The ESE showed spikes/peaks at the end of each electronic shell, providing insight into when an electronic shell closes and a new one starts. The electronic structures of elements in the periodic table were mapped using this methodology. These graphs did not show complete agreement with the previously known “Aufbau” filling rule. A new filling rule was suggested based on the present observations. Finally, a new way to organize elements in the periodic table is suggested. Two earlier topics of effective nuclear charge, and shielding factor were also briefly discussed and compared numerically to demonstrate the capability of the new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Politzer P, Parr RG (1974) J Chem Phys 61:4258

    Article  CAS  Google Scholar 

  2. Politzer P, Murray JS (2002) Theor Chem Accounts 108:134–142

    Article  CAS  Google Scholar 

  3. Politzer P (1987) Single-particle density in physics and chemistry. Academic, New York

  4. Politzer P (2003) In: Brandas EJ, Kryachko ES (eds) Fundamental world of quantum chemistry, vol 1. Kluwer, Dordrecht, pp 631–638

  5. Politzer P, Jin P, Jabout AF, Murray JS (2002) Acta Phys Chim Debrec 34–35:349

  6. Hellmann H (1937) Einfuhrung in die Quantenchemie. Deuticke, Leipzig

    Google Scholar 

  7. Feynman RP (1939) Phys Rev 56:340

    Article  CAS  Google Scholar 

  8. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Article  Google Scholar 

  9. March NH (1982) J Phys Chem 86:2262

    Article  CAS  Google Scholar 

  10. Milne EA (1927) Proc Camb Philol Soc 23:794

    Article  CAS  Google Scholar 

  11. Zadeh DH, Murray JS, Redfern PC, Politzer P (1991) J Phys Chem 95(20):7702–7709

    Article  Google Scholar 

  12. Zadeh DH, Grodzicki M, Seminario JM, Politzer P (1991) J Phys Chem 95:7699

    Article  Google Scholar 

  13. Zadeh DH, Murray JS, Grodzicki M, Seminario JM, Politzer P (1992) Int J Quantum Chem 42:267–272

    Article  Google Scholar 

  14. Zadeh DH, Murray JS, Grice ME, Politzer P (1993) Int J Quantum Chem 45:15–20

    Article  Google Scholar 

  15. Politzer P, Zadeh DH (1993) J Chem Phys 98(9):7659

    Article  CAS  Google Scholar 

  16. Politzer P, Zadeh DH (1994) J Phys Chem 98:1576–1578

    Article  CAS  Google Scholar 

  17. Moini S, Puri A, Zadeh DH, Das PC (1995) Mod Phys Lett B 09:45

    Article  CAS  Google Scholar 

  18. Zadeh DH, Grice ME, Concha MC, Murray JS, Politzer P (1995) J Comput Chem 16(5):654–658

    Article  Google Scholar 

  19. Orozco M, Luque FJ, Zadeh DH, Gao J (1995) J Chem Phys 102:6145

    Article  CAS  Google Scholar 

  20. Gao J, Zadeh DH, Shao L (1995) J Phys Chem 99(44):16460–16467

    Article  CAS  Google Scholar 

  21. Gao J, Pavelites JJ, Zadeh DH (1996) J Phys Chem 100(7):2689–2697

    Article  CAS  Google Scholar 

  22. Politzer P, Concha MC, Grice ME, Murray JS, Lane P, Zadeh DH (1998) J Mol Struct (THEOCHEM) 452:75–83

    Article  CAS  Google Scholar 

  23. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley, New York

  24. McNaught AD, Wilkinson A (1997) IUPAC. Compendium of chemical terminology—the Gold Book, 2nd edn. Blackwell, Oxford

    Google Scholar 

  25. Kramida A, Ralchenko Yu, Reader J, NIST ASD Team (2014) NIST Ionization Energy Database NIST Atomic Spectra Database (ver. 5.2), National Institute of Standards and Technology, Gaithersburg, MD. https://physics.nist.gov/asd. Accessed 9 August 2017

  26. Lakhtakia A, Salpeter EE (1996) Models and Modelers of Hydrogen. Am J Phys World Sci 65(9):933

    Google Scholar 

  27. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York, pp 5–42

  28. Szabo A, Ostlund NS (1989) Modern quantum chemistry. McGraw-Hill, New York, pp 39–70

  29. Pauling L (1932) The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J Am Chem Soc 54(9):3570–3582

    Article  CAS  Google Scholar 

  30. Pauling L (1960) Nature of the chemical bond. Cornell University Press, New York, pp 88–107

  31. Mulliken RS (1934) A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2(11):782–793

    Article  CAS  Google Scholar 

  32. Mulliken RS (1935) Electronic structures of molecules XI. Electroaffinity, molecular orbitals and dipole moments. J Chem Phys 3(9):573–585

    Article  CAS  Google Scholar 

  33. Slater JC (1930) Atomic shielding constants. Phys Rev 36(1):57–64

    Article  CAS  Google Scholar 

  34. Clementi E, Raimondi DL (1963) Atomic screening constants from SCF functions. J Chem Phys 38(11):2686–2689

    Article  CAS  Google Scholar 

  35. Clementi E, Raimondi DL, Reinhardt WP (1967) Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons. J Chem Phys 47(4):1300–1307

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush H. Zadeh.

Additional information

This paper has been submitted in honor of Prof. Peter Politzer

This paper belongs to Topical Collection P. Politzer 80th Birthday Festschrift

Electronic supplementary material

ESM 1

(DOCX 3902 kb)

ESM 2

(DOCX 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadeh, D.H. Electronic structures of elements according to ionization energies. J Mol Model 23, 357 (2017). https://doi.org/10.1007/s00894-017-3534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3534-2

Keywords

Navigation