Skip to main content
Log in

Cosmic vacuum energy decay and creation of cosmic matter

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

In the more recent literature on cosmological evolutions of the universe, the cosmic vacuum energy has become a nonrenouncable ingredient. The cosmological constant Λ, first invented by Einstein, but later also rejected by him, presently experiences an astonishing revival. Interestingly enough, it acts like a constant vacuum energy density would also do. Namely, it has an accelerating action on cosmic dynamics, without which, as it appears, presently obtained cosmological data cannot be conciliated with theory. As we are going to show in this review, however, the concept of a constant vacuum energy density is unsatisfactory for very basic reasons because it would claim for a physical reality that acts upon spacetime and matter dynamics without itself being acted upon by spacetime or matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JD, Laing PA, Lau EL et al (1998) Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration. Phys Rev Lett 81(14):2858–2861

    Article  CAS  Google Scholar 

  • Bennett CL, Halpern M, Hinshaw G et al (2003) First year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results. Astrophys J Suppl 148:127

    Google Scholar 

  • Bondi H, Gold T (1948) The steady-state theory of the expanding universe. Mon Notices R Astron Soc 108:252–270

    Google Scholar 

  • Brout R, Englert F, Gunzig E (1978) The creation of the universe as a quantum phenomenon. Ann Phys 115:78–106

    Article  CAS  Google Scholar 

  • Cooperstock FI, Israelit MI (1995) The energy of the Universe. Found Phys 25:631–635

    Article  Google Scholar 

  • Davis TM, Lineweaver CH (2003) Expanding confusion: common misconceptions of cosmological horizons and the superluminal expansion of the Universe. http://arxiv.org/pdf/astro-ph/0310808

  • Dutta Choudhury SB, Sil A (2006) Λ− variable cosmological models with viscous fluids. Astrophys Space Sci 301:61–64

    Article  Google Scholar 

  • Einstein A (1973) Über die Spezielle und Allgemeine Relativitätstheorie. Vieweg Verlag, Braunschweig

    Google Scholar 

  • Einstein A, de Sitter W (1932) On the relation between the expansion and the mean density of the universe. Proc Natl Acad Sci USA 18:213–214

    Article  PubMed  CAS  Google Scholar 

  • Einstein A, Straus EG (1945) The influence of the expansion of space on the gravitation fields surrounding individual stars. Rev Mod Phys 17:120–124

    Article  Google Scholar 

  • Fahr HJ (2004) The cosmology of empty space: how heavy is the vacuum. In: Loeffler Wand Weingartner P (ed) Knowledge and belief. Proceedings of the 26th international Wittgenstein symposium. Wissen und Glauben, Wien pp 329–339

  • Fahr HJ (2006) Cosmological consequences of scale-related comoving masses for cosmic pressure, mass, and vacuum energy density. Found Phys Lett 19(5):423–440

    Article  Google Scholar 

  • Fahr HJ, Siewert M (2006) Does Pioneer measure local spacetime expansion? http://arxiv.org/pdf/gr-qc/0610034

  • Fahr HJ, Siewert M (2007) Local spacetime dynamics, the Einstein–Straus vacuole, and the Pioneer anomaly: a new access to these problems. Zeitschrift für Naturforschung (in press)

  • Fahr HJ, Heyl M (2006a) Concerning the instantaneous mass and the extent of an expanding universe. Astron Nachrichten/Astron Notes 327:733–736

    Article  Google Scholar 

  • Fahr HJ, Heyl M (2006b) About universes with scale-related total masses and their abolition of presently outstanding cosmological problems. Astron Nachrichten/Astron Notes 328:192–199

    Article  Google Scholar 

  • Fahr HJ, Zoennchen JH (2006) Cosmological implications of the Machian principle. Naturwissenschaften 93:577–587

    Article  PubMed  CAS  Google Scholar 

  • Fischer E (1993) A cosmological model without singularity. Astrophys Space Sci 207:203–219

    Article  Google Scholar 

  • Gönner H (1994) Einführung in die Kosmologie. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Hawking SW (1975) Particle creation by black holes. Comm Math Phys 43:199–220

    Article  Google Scholar 

  • Hoyle F (1948) A new model for the expanding universe. Mon Notices R Astron Soc 108:372–382

    Google Scholar 

  • Hoyle F (1990) On the relation of the large numbers problem to the nature of mass. Astrophys Space Sci 168:59–88

    Article  Google Scholar 

  • Hoyle F (1992) Mathematical theory of the origin of matter. Astrophys Space Sci 198:195–230

    Article  Google Scholar 

  • Hoyle F, Narlikar JV (1966a) On the effects of the non-conservation of baryons in cosmology. Proc R Soc Lond A 290:143–161

    Article  Google Scholar 

  • Hoyle F, Narlikar JV (1966b) A radical departure from the ‘Steady-State’ concept in cosmology. Proc R Soc Lond A 290:162–176

    Google Scholar 

  • Hoyle F, Burbidge G, Narlikar JV (1993) A quasi-steady state cosmological model with creation of matter. Astrophysl J 410:437–457

    Article  CAS  Google Scholar 

  • Kolb EW (1989) A coasting cosmology. Astrophys J 344:543–550

    Article  Google Scholar 

  • Massa C (1994) Implications of a cosmological term coupled to matter. Astrophys Space Sci 215:59–72

    Article  Google Scholar 

  • Overduin JM, Cooperstock FI (1998) Evolution of the scale factor with a variable cosmological term. Phys Rev D 58:1–23

    Article  Google Scholar 

  • Overduin JM, Fahr HJ (2001) Matter, spacetime and the vacuum. Naturwissenschaften 88:491–503

    Article  PubMed  CAS  Google Scholar 

  • Peebles PJE, Ratra B (2003) The cosmological constant and dark energy. Rev Mod Phys 75(4):559–605

    Article  CAS  Google Scholar 

  • Perlmutter S, Aldering G, Goldhaber G et al (1999) Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys J 517:565–586

    Article  Google Scholar 

  • Rosen N (1994) The energy of the universe. Gen Rel Grav 26(3):319–321

    Article  Google Scholar 

  • Schuecking E (1954) Das Schwarzschild’sche linienelement und die expansion des weltalls. Zeitschrift Physik 137:595–603

    Article  Google Scholar 

  • Stephani H (1988) Allgemeine Relativitätstheorie. VEB Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  • Tryon EP (1973) Is the universe a vacuum fluctuation. Nature 246:396

    Article  Google Scholar 

  • Unnikrishnan CS, Gillies GT, Ritter RC (2002) Evidence for a quantum birth of our universe. Pramana 59(2):369–374

    Google Scholar 

  • Vilenkin A (1982) Creation of universes from nothing. Phys Lett B 117:25–28

    Article  Google Scholar 

  • Vishwakarma RG (2002) Cosmology with a variable Λ-term. Class Quant Grav 19:373–379

    Google Scholar 

  • Wetterich C (1995) An asymptotically vanishing time-dependent cosmological constant. Astron Astrophys 301:321–328

    Google Scholar 

  • Weyl H (1921) Raum, Zeit, Materie. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Jörg Fahr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahr, HJ., Heyl, M. Cosmic vacuum energy decay and creation of cosmic matter. Naturwissenschaften 94, 709–724 (2007). https://doi.org/10.1007/s00114-007-0235-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-007-0235-1

Keywords

Navigation