Skip to main content
Log in

Cosmological implications of the Machian principle

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The famous idea of Ernst Mach concerning the non-absolute but relational character of particle inertia is taken up in this paper and is reinvestigated with respect to its cosmological implications. From Thirring’s general relativistic study of the old Newtonian problem of the relativity of rotations in different reference systems, it appears that the equivalence principle with respect to rotating reference systems, if at all, can only be extended to the system of the whole universe, if the mass of the universe scales with the effective radius or extent of the universe. A reanalysis of Thirring’s derivations still reveals this astonishing result, and thus the general question must be posed: how serious this result has to be taken with respect to cosmological implications. As we will show, the equivalence principle is, in fact, fulfilled by a universe with vanishing curvature, i.e. with a curvature parameter\(k = 0\), which just has the critical density \(\rho _{{crit}} = {3H^{2} } \mathord{\left/ {\vphantom {{3H^{2} } {8\pi G}}} \right. \kern-\nulldelimiterspace} {8\pi G}\), where \(H\) is the Hubble constant. It turns out, however, that this principle can only permanently be fulfilled in an evolving cosmos, if the cosmic mass density, different from its conventional behaviour, varies with the reciprocal of the squared cosmic scale. This, in fact, would automatically be realized, if the mass of each cosmic particle scales with the scale of the universe. The latter fact, on one hand, is a field-theoretical request from a general relativistic field theory which fulfills H. Weyl’s requirement of a conformal scale invariance. On the other hand, it can perhaps also be concluded on purely physical grounds, when taking into account that as source of the cosmic metrics only an effective mass density can be taken. This mass density represents the bare mass density reduced by its mass equivalent of gravitational self-binding energy. Some interesting cosmological conclusions connected with this fact are pointed out in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbour JB (1995) General relativity as a perfectly Machian theory. In: Barbour and Pfister (see below), pp 214–236

  • Barbour J, Pfister H (eds) (1995) Mach’s principle: from Newton’s bucket to quantum gravity. Birkhäuser, Boston

    Google Scholar 

  • Bartelmann M (2001) Kosmische inflation. Phys Bl 57(9):41–47

    Google Scholar 

  • Bennett CL, Halpern M, Hinshaw G, Jarosik N, Kogut A, Limon M, Meyer SS, Page L, Spergel DN, Tucker GS, Wollack E, Wright EL, Barnes C, Greason MR, Hill RS, Komatsu E, Nolta MR, Odegard N, Peiris HV, Verde L, Weiland JL (2003) First Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results. Astrophys J Suppl 148:1–27

    Article  Google Scholar 

  • Blome HJ, Hoell J, Priester WP (2002) Kosmologie. Bergmann & Schaefer, Lehrbuch der Experimentalphysik Bd.8: Sterne und Weltraum, Walter de Gruyter GmbH, pp 439–582

  • Brans CH (1962) Mach’s principle and the locally measured gravitational constant in general relativity. Phys Rev 125:388–396

    Article  Google Scholar 

  • Dehnen H (1968) Das Verhalten von gerichteter und isotroper Strahlung in Gravitationsfeldern. Zeitschrift Astrophysik 68:190-200

    Google Scholar 

  • Dirac PAM (1938) The large number hypothesis and the Einstein theory of gravitation. Proc Roy Soc A 165:199–205

    Google Scholar 

  • Einstein A (1915) Zur Allgemeinen Relativitätstheorie. Sitzungsberichte Preussische Akademie der Wissenschaften, Berlin

  • Einstein A (1917) Kosmologische Betrachtungen zur Allgemeinen Relativitätstheorie. Sitzungsberichte Preussische Akademie der Wissenschaften, Berlin

  • Einstein A, Straus EG (1954) The influence of the expansion of space on the gravitation fields surrounding the individual stars. Rev Mod Phys 17(2):120-124

    Article  Google Scholar 

  • Fahr HJ (2004) The cosmology of empty space: how heavy is the vacuum. In: Loeffler W and Weingartner P (eds) Knowledge and belief. Proceedings of the 26th international Wittgenstein symposium, Wissen und Glauben, Wien

  • Fahr HJ (2006) Cosmological consequences of scale-related comoving masses for cosmic pressure, mass and vacuum energy density. Foundations Physics Letters 19(5):423–440

    Article  Google Scholar 

  • Fahr HJ, Heyl M (2006) Concerning the instantaneous mass and extent of an expanding universe. Astron Nachrichten/Astron Notes, AN 327(4):383–386

    Google Scholar 

  • Fischer E (1993) A cosmological model without singularity. Astrophys Space Sci 207:203–219

    Article  Google Scholar 

  • Friedmann AA (1922) Über die Krümmung des Raumes. Z Phys 10:377–386

    Article  Google Scholar 

  • Friedmann AA (1924) Über die Möglichkeit einer Welt mit konstanter, negativer Krümmung. Z Phys 21:326–332

    Article  Google Scholar 

  • Goenner H (1996) Einführung in die Spezielle und Allgemeine Relativitätstheorie. Spektrum Akademischer Verlag, Heidelberg Berlin Oxford

    Google Scholar 

  • Hönl H, Dehnen H (1962) Zur Frage der Relativität der Rotationsbewegungen. Z Phys 166:544

    Article  Google Scholar 

  • Hönl H, Dehnen H (1968) Erlaubt die 3oK-Strahlung Rückschlüsse auf eine konstante oder veränderliche Gravitationszahl? Z Astrophy 68:181

    Google Scholar 

  • Hönl H, Maue AW (1956) Uber das Gravitationsfeld rotierender Massen. Z Phys 144:152–167

    Article  Google Scholar 

  • Hofmann W (1995) Motion and inertia. In: Barbour B, PFister H (eds) Mach’s principle: from Newton’s bucket to quantum gravity. The Center for Einstein Studies. Birkhauser Verlag, Boston, p 128

    Google Scholar 

  • Hoyle F (1990) On the relation of the large numbers problem to the nature of mass. Astrophys Space Sci 168:59–88

    Article  Google Scholar 

  • Hoyle F (1992) Mathematical theory of the origin of matter. Astrophys Space Sci 198:195–230

    Article  Google Scholar 

  • Jaffe AH, Ade PA, Balbi A, Bock JJ, Bond JR, Borrill J, Boscaleri A, Coble K, Crill BP, de Bernardis P, Farese P, Ferreira PG, Ganga K, Giacometti M, Hanany S, Hivon E, Hristov VV, Iacoangeli A, Lange AE, Lee AT, Martinis L, Masi S, Mauskopf PD, Melchiorri A, Montroy T, Netterfield CB, Oh S, Pascale E, Piacentini F, Pogosyan D, Prunet S, Rabii B, Rao S, Richards PL, Romeo G, Ruhl JE, Scaramuzzi F, Sforna D, Smoot GF, Stompor R, Winant CD, Wu JH (2001) Cosmology from MAXIMA-1, BOOMERANG, and COBE DMR Cosmic Microwave Background Observations. Phys Rev Lett 86:3475–3479

    Article  CAS  PubMed  Google Scholar 

  • Jammer M (2000) Concepts of mass in contemporary physics and philosophy. Princeton University Press, Princeton

    Google Scholar 

  • Jordan P (1947) Die Herkunft de Sterne. Wissenschaftliche Verlagsgesellschaft GmbH, Stuttgart, pp 16–30

  • Lynden-Bell D (1995) A relative Newtonian mechanics. In: Barbour B, PFister H (eds) Mach’s principle: from Newton’s bucket to quantum gravity. The Center for Einstein Studies. Birkhauser Verlag, Boston, pp 172–178

    Google Scholar 

  • Mach E (1983) Die Mechanik in ihrer Entwicklung, historisch-kritisch dargestellt. F.A. Brockhaus Verlag, Leipzig

    Google Scholar 

  • Mashhoon B, Hehl FH, Theiss DS (1984) On the gravitational effects of rotating masses—the Thirring–Lense papers. Gen Rel Grav 16:711–750

    Article  Google Scholar 

  • Newton I (1687) Philosophia naturalis principia mathematica. Translated by: Motte A and Cajori F (1962) The motion of bodies. University of California, Berkeley

    Google Scholar 

  • Overduin J, Cooperstock FI (1998) Evolution of the scale factor with a variable cosmological term. Phys Rev D58:043506; astro-ph/9805260

    Google Scholar 

  • Overduin J, Fahr HJ (2001) Space-time and the vacuum. Naturwissenschaften 88:491–503

    Article  CAS  PubMed  Google Scholar 

  • Overduin J, Priester WP (2001) Problems of modern cosmology: how dominant is the vacuum? Naturwissenschaften 88:229–248

    Article  CAS  PubMed  Google Scholar 

  • Peacock JA (1999) Cosmological physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Perlmutter S, Aldering G, Goldhaber G, Knop RA, Nugent P, Castro PG, Deustua S, Fabbro S, Goobar A, Groom DE, Hook IM, Kim AG, Kim MY, Lee JC, Nunes NJ, Pain R, Pennypacker CR, Quimby R, Lidman C, Ellis RS, Irwin M, McMahon RG, Ruiz-Lapuente P, Walton N, Schaefer B, Boyle BJ, Filippenko AV, Matheson T, Fruchter AS, Panagia N, Newberg HJM, Couch WJ, The Supernova Cosmology Project (1999) Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys J 517:565–586

    Article  Google Scholar 

  • Reissner H (1995) On the relativity of accelerations. In: Barbour J, Pfister H (eds) Mach’s principle: from Newton’s bucket to quantum gravity. The Center for Einstein Studies. Birkhäuser Verlag, Boston, pp 134–141

    Google Scholar 

  • Rosen N, Copperstock FI (1992) The mass of a body in general relativity. Class Quantum Gravity 9:2657–2663

    Article  Google Scholar 

  • Schroedinger E (1995) The possibility of fulfillment of the relativity requirement in classical mechanics. In: Barbour J, Pfister H (eds) Mach’s principle: from Newton’s bucket to quantum gravity. The Center for Einstein Studies. Birkhäuser Verlag, Boston, pp 147–158

    Google Scholar 

  • Schücking E (1954) Das Schwarzschildsche Linienelement und die Expansion des Weltalls. Zeitschrift Physik 137:595–603

    Article  Google Scholar 

  • Soergel-Fabricius C (1960) Thirring-effekt im Einstein kosmos. Z Phys 159:541–553

    Article  Google Scholar 

  • Soergel-Fabricius C (1961) Über den Ursprung von Coriolis und Zentrifugalkräften in stationären Räumen. Z Phys 161:392–403

    Article  CAS  Google Scholar 

  • Thirring H (1918) Über die Wirkung rotierender ferner Massen in der Einstein’schen Gravitationstheorie. Phys Zeitschrift 19:33–39

    Google Scholar 

  • Weinberg S (1989) The cosmological constant problem. Rev Mod Phys 61:1–23

    Article  CAS  Google Scholar 

  • Wesson P (1999) Space, Time, and Matter, World Scientific Publication, Singapore

  • Wesson PS (2000) On the re-emergence of Eddington’s philosophy of Science. Observatory 120:59–62

    Google Scholar 

  • WMAO (2001) http://map.gsfc.nasa.gov (date accessed February 2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Fahr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahr, H.J., Zoennchen, J.H. Cosmological implications of the Machian principle. Naturwissenschaften 93, 577–587 (2006). https://doi.org/10.1007/s00114-006-0133-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-006-0133-y

Keywords

Navigation