Skip to main content
Log in

Remediating polluted soils

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

This review focuses on treatment-based remediation of soils and the acquisition of data to support and monitor this remediation. Only in the last two decades has significant progress been made in regulating for soil pollution, with a parallel development of methodologies for soil assessment and remediation. However, soil complexity remains a problem for pollutant measurements relevant to environmental risk and informative to the design or evaluation of remediation technologies. Understanding the distribution of pollutants between different soil phases and the kinetics of transfer between these pools is fundamental to prediction for these processes; further progress is needed to characterise less accessible pollutant pools and to develop guidelines for their analysis. Available remediation options include physical, chemical and biological treatments, and these options offer potential technical solutions to most soil pollution. However, selecting the most appropriate approach requires detailed information on how pollutants interact with soil physio-chemical properties. Only general information is available as to the effectiveness of specific treatment systems for particular soil type–pollutant combinations. Given the high degree of heterogeneity in physio-chemical characteristics and pollutant distribution of affected soils, prediction of treatment timescales and levels of residual contamination remains a problem. On sites with a range of organic and inorganic pollutants present, combinations of different treatment approaches may offer the best prospect for effective remediation. Further work is needed to provide evidence that residual contamination does not pose significant risk and to evaluate effects of treatments on general soil function in relation to this contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams JA, Reddy KR (2003) Extent of benzene biodegradation in saturated soil column during air sparging. Ground Water Monit Remediat 23:85–94

    Article  CAS  Google Scholar 

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • Aguilar J, Bouza P, Dorronsoro C, Fernandez E, Fernandez J, Garcia I, Martin F, Simon M (2004) Application of remediation techniques for immobilisation of metals in soils contaminated by a pyrite tailing spill in Spain. Soil Use Manage 20:451–453

    Article  Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresour Technol 79:273–276

    Article  PubMed  CAS  Google Scholar 

  • Alshawabkeh AN, Yeung AT, Bricka MR (1999) Practical aspects of in-situ electrokinetic extraction. J Environ Eng - ASCE 125:27–35

    Article  CAS  Google Scholar 

  • Aksoy A, Culver TB (2000) Effect of sorption assumptions on aquifer remediation designs. Groundwater 38:200–208

    CAS  Google Scholar 

  • Armishaw R, Bardos RP, Dunn RM, Hill JM, Pearl M, Rampling T, Wood PA (1992) Review of innovative contaminated soil clean-up processes. Warren Springs, Stevenage

    Google Scholar 

  • Bachmann G (1991) Soil clean-up policies in the Federal Republic of Germany. Soil Use Manage 7:158–162

    Article  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile organic pollutants. Nat Biotechnol 22:583–588

    Article  PubMed  CAS  Google Scholar 

  • Bardos RP, van Veen HJ (1996) Review of long-term or extensive treatment technologies. Land Contam Reclam 4:19–36

    Google Scholar 

  • Basta NT, Gradwohl R, Snethen KL, Schroder JL (2001) Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate. J Environ Qual 30:1222–1230

    PubMed  CAS  Google Scholar 

  • Beck AJ, Wilson SC, Alcock RE, Jones KC (1995) Kinetic constraints on the loss of organic chemicals from contaminated soils—implications for soil quality limits. Crit Rev Environ Sci Technol 25:1–43

    Article  CAS  Google Scholar 

  • Belyaeva ON, Haynes RJ, Birukova OA (2005) Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper. Biol Fertil Soils 41:85–94

    Article  CAS  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Bilek F (2004) Prediction of ground water quality affected by acid mine drainage to accompany in situ remediation. Appl Earth Sci 113:B31–B42

    Article  CAS  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Bogan BW, Trbovic V (2003) Effect of sequestration on PAH degradability with Fenton’s reagent: roles of total organic carbon, humin, and soil porosity. J Hazard Mater 100:285–300

    Article  PubMed  CAS  Google Scholar 

  • Bolan NS, Duraisamy VP (2003) Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies. Aust J Soil Res 41:533–555

    Article  CAS  Google Scholar 

  • Bramley RGV, Rimmer DL (1988) Dredged materials—problems associated with their use on land. J Soil Sci 39:469–482

    Article  Google Scholar 

  • Bright DA, Healey N (2003) Contaminant risks from biosolids land application: contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver, British Columbia. Environ Pollut 126:39–49

    Article  PubMed  CAS  Google Scholar 

  • Chekol T, Vough LR, Chaney RL (2002) Plant-soil-contaminant specificity affects phytoremediation of organic contaminants. Int J Phytoremediation 4:17–26

    Article  CAS  Google Scholar 

  • Chaineau CH, Morel JL, Oudot J (1997) Phytotoxicity and plant uptake of fuel oil hydrocarbons. J Environ Qual 26:1478–1483

    CAS  Google Scholar 

  • Collins C, Laturnus F, Nepovim A (2002) Remediation of BTEX and trichloroethene—current knowledge with special emphasis on phytoremediation. Environ Sci Pollut Res 9:86–94

    CAS  Google Scholar 

  • Cornelissen G, van Noort PCM, Govers HAJ (1998) Mechanisms of slow desorption of organic compounds from sediments: a study using model sorbents. Environ Sci Technol 32:3124–3131

    Article  CAS  Google Scholar 

  • David MD, Seiber JN (1999) Accelerated hydrolysis of industrial organophosphates in water and soil using sodium perborate. Environ Pollut 105:121–128

    Article  CAS  Google Scholar 

  • Defra (2001) The Draft Soil Strategy for England—a consultation paper. Department for Environment, Food and Rural Affairs. HMSO, London

    Google Scholar 

  • Doak M (2004) The future for excavated contaminated/brownfield site materials: new policy and practice across the EU. Land Contam Reclam 12:309–322

    Article  Google Scholar 

  • Dudal Y, Jacobsen AR, Samson R, Deschenes L (2004) Modelling the dynamics of pentachlorophenol bioavailability in column experiments. Water Res 38:3147–3154

    Article  PubMed  CAS  Google Scholar 

  • EC (2001) Commission of the European Communities. Environment 2010: our future, our choice: the sixth environment action

  • ENDS (2004) Contaminated soil held to be waste by European Court. ENDS Rep 356:44

    Google Scholar 

  • Epstein AL, Gussman C, Blaylock MJ, Yermiyahu U, Huang JW, Kapulnik Y, Orser CS (1999) EDTA and Pb–EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant Soil 208:87–94

    Article  CAS  Google Scholar 

  • Felsot AS (1996) Options for cleanup and disposal of pesticide wastes generated on a small-scale. J Environ Sci Health Part B 31:365–381

    Google Scholar 

  • Fengxiang XH, Ti S, Monts DL, Plodinec MJ, Banin A, Triplett GE (2003) Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften 90:395–401

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494

    Article  CAS  Google Scholar 

  • George CE, Lightsey GR, Jun I, Fan JY (1992) Soil decontamination via microwave and radio-frequency covolatilisation. Environ Prog 11:216–219

    Article  CAS  Google Scholar 

  • Gomez-Lahoz C, Rodriguez-Maroto JM, Wilson DJ (1995) Soil clean-up by in-situ aeration. XXII. Impact of natural soil organic matter on cleanup rates. Sep Sci Technol 30:659–682

    Article  CAS  Google Scholar 

  • Haimi J (2000) Decomposer animals and bioremediation of soils. Environ Pollut 107:233–238

    Article  PubMed  CAS  Google Scholar 

  • Hamon RE, McLaughlin JM (1999) Use of the hyperaccumulator Thlaspi caerulescens for bioavailable contaminant stripping. In: Wenzel WW et al. (eds) Proceedings 5th international conference on the biogeochemistry of trace elements—ICOBTE Vienna, pp 908–909

  • Harris JA (2004) Measurements of the soil microbial community for estimating the success of restoration. Eur J Soil Sci 54:801–808

    Article  Google Scholar 

  • Helmisaari HS, Derome J, Fritze H, Nieminen T, Palmgren K, Salemaa M, VanhaMajamaa I (1995) Copper in Scots pine forests around a heavy-metal smelter in south-western Finland. Water Air Soil Pollut 85:1727–1732

    Article  CAS  Google Scholar 

  • Helmke PA, Naidu R (1996) Fate of contaminants in the soil environment: metal contaminants. In: Naidu R, Kookana RS, Oliver DP, Rogers S, McLaughlin MJ (eds) Contaminants and the soil environment in the Australasia-Pacific Region. Kluwer, Dordrecht, pp 69–93

    Google Scholar 

  • Hickman ZA, Reid BJ (2005) Towards a more appropriate water-based extraction for the assessment of organic contaminant availability. Environ Pollut 138:299–306

    Article  PubMed  CAS  Google Scholar 

  • Hortensius D, Nortcliff S (1991) International standardisation of soil quality measurement procedures for the purpose of soil protection. Soil Use Manage 7:163–166

    Article  Google Scholar 

  • Huang WL, Ping PA, Yu ZQ, Fu HM (2003) Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Appl Geochem 18:955–972

    Article  CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    Article  PubMed  CAS  Google Scholar 

  • Huesemann MH, Hausmann TS, Fortman TJ (2003) Assessment of bioavailability limitations during slurry biodegradation of petroleum hydrocarbons in aged soils. Environ Toxicol Chem 22:2853–2860

    Article  PubMed  CAS  Google Scholar 

  • ISO (2005) Soil quality—guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials. ISO/DIS 17402.http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38349&scopelist=PROGRAMME. Under development. Accessed June 2005

  • Jefferis SA, Norris GH, Thomas AG (1997) Developments in permeable and low permeability barriers. Land Contam Reclam 5:225–231

    Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  PubMed  CAS  Google Scholar 

  • Jong T, Parry DL (2005) Evaluation of the stability of arsenic immobilized by microbial sulfate reduction using TCLP extractions and long-term leaching techniques. Chemosphere 60:254–265

    Article  PubMed  CAS  Google Scholar 

  • Kanaly RA, Bartha R (1999) Cometabolic mineralization of benzo[a]pyrene caused by hydrocarbon additions to soil. Environ Toxicol Chem 18:2186–2190

    Article  CAS  Google Scholar 

  • Karenlampi S, Schat H, Vangronsveld J, Verkleij JAC, van der Lelie D, Mergeay M, Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107:225–231

    Article  PubMed  CAS  Google Scholar 

  • Khan M, Scullion J (1999) Microbial activity in grassland soil amended with sewage sludge containing varying rates and combinations of Cu, Ni, and Zn. Biol Fertil Soils 30:202–209

    Article  CAS  Google Scholar 

  • Khan M, Scullion J (2000) The effect of soil type on microbial responses to metals in sludge. Environ Pollut 110:115–125

    Article  PubMed  CAS  Google Scholar 

  • Khan AG, Kuek C, Chaudry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    Article  PubMed  CAS  Google Scholar 

  • Khodadoust AP, Sorial GA, Wilson GJ, Suidan MT, Griffiths RA, Brenner RC (1999) Integrated system for remediation of contaminated soils. J Environ Eng-ASCE 125:1033–1041

    Article  CAS  Google Scholar 

  • Kim J, Choi H (2002) Modeling in situ ozonation for the remediation of nonvolatile PAH-contaminated unsaturated soils. J Contam Hydrol 55:261–285

    Article  PubMed  CAS  Google Scholar 

  • Kim YB, Park KY, Chung Y, Oh KC, Buchanan BB (2004) Phytoremediation of anthracene contaminated soils by different plant species. J Plant Biol 47:174–178

    CAS  Google Scholar 

  • Kirk JL, Klironomos JN, Lee H, Trevors JT (2005) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut 133:455–465

    Article  PubMed  CAS  Google Scholar 

  • Knopp D, Seifert M, Vaananen V, Niessner R (2000) Determination of polycyclic aromatic hydrocarbons in contaminated water and soil samples by immunological and chromatographic methods. Environ Sci Technol 34:2035–2041

    Article  CAS  Google Scholar 

  • Laureysens I, De Temmerman L, Hastir T, Van Gysel M, Ceulemans R (2005) Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. II. Vertical distribution and phytoextraction potential. Environ Pollut 133:141–151

    Article  CAS  Google Scholar 

  • Li M, Tsai SF, Rosen SM, Wu RS, Reddy KB, DiCesare J, Salamone SJ (2001) Preparation of pentachlorophenol derivatives and development of a microparticle-based on-site immunoassay for the detection of PCP in soil samples. J Agric Food Chem 49:1287–1292

    Article  PubMed  CAS  Google Scholar 

  • Liang CJ, Bruell CJ, Marley MC, Sperry KL (2003) Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil Sediment Contam 12:207–228

    Article  CAS  Google Scholar 

  • Liang CJ, Bruell CJ, Marley MC, Sperry KL (2004) Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere 55:1225–1233

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Pamo E, Barettino D, Anton-Pacheco C, Ortiz G, Arranz JC, Gumiel JC, Martinez-Pledel B, Aparicio M, Montouto O (1999) The extent of the Aznalcollar pyritic sludge spill and its effects on soils. Sci Total Environ 242:67–88

    Article  Google Scholar 

  • Margesin R, Walder G, Schinner F (2003) Bioremediation assessment of a BTEX-contaminated soil. Acta Biotechnol 23:29–36

    Article  CAS  Google Scholar 

  • McGrath SP, Shen ZC, Zhao FJ (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188:153–159

    Article  CAS  Google Scholar 

  • McGrath SP, Knight B, Killham K, Preston S, Paton GI (1999) Assessment of the toxicity of metals in soils amended with sewage sludge using a chemical speciation technique and a lux-based biosensor. Environ Toxicol Chem 18:659–663

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Zarcinus BA, Stevens DP, Cook N (2000) Soil testing for heavy metals. Commun Soil Sci Plant Anal 31:1661–1700

    CAS  Google Scholar 

  • Mulligan CN, Eftekhari F (2003) Remediation with surfactant foam of PCP-contaminated soil. Eng Geol 70:269–279

    Article  Google Scholar 

  • Mulligan CN, Yong RN (2004) Natural attenuation of contaminated soils. Environ Int 30:587–601

    Article  PubMed  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001a) Remediation technologies for metal contaminated soils and ground water: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001b) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  • Nam P, Kapila S, Liu QH, Tumiatti W, Porciani A, Flanigan V (2001) Solvent extraction and tandem dechlorination for decontamination of soil. Chemosphere 43:485–491

    Article  PubMed  CAS  Google Scholar 

  • Nathanail CP, Bardos RP (2004) Reclamation of contaminated land. Wiley, Chicester

    Google Scholar 

  • Nathanail CP, Earl N (2001) Human health risk assessment: guideline values and magic numbers. In: Hester RE, Harrison RM (eds) Assessment and reclamation of contaminated land. Royal Society of Chemistry, Cambridge, pp 85–102

    Chapter  Google Scholar 

  • Norris G, Al-Dhahir Z, Birnstingl J, Plant SJ, Cui S, Mayell P (1999) A case study of the management and remediation of soil contaminated with polychlorinated biphenyls. Eng Geol 53:177–185

    Article  Google Scholar 

  • Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8

    Article  PubMed  CAS  Google Scholar 

  • Ogram AV, Jessup RE, Ou LT, Rao PSC (1985) Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy)acetic acid in soils. Appl Environ Microbiol 49:582–587

    PubMed  CAS  Google Scholar 

  • Oudeh M, Khan M, Scullion J (2002) Plant accumulation of potentially toxic elements in sewage sludge as affected by soil organic matter level and mycorrhizal fungi. Environ Pollut 116:293–300

    Article  PubMed  CAS  Google Scholar 

  • Park G, Shin HS, Ko SO (2005) A laboratory and pilot study of thermally enhanced soil vapor extraction method for the removal of semi-volatile organic contaminants. J Environ Sci Health Part A 40:881–897

    Article  CAS  Google Scholar 

  • Pierpoint AC, Hapeman CJ, Torrents A (2003) Ozone treatment of soil contaminated with aniline and trifluralin. Chemosphere 50:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Pollard SJT, Lythgo M, Duarte-Davidson R (2001) The extent of contaminated land problems and the scientific response. In: Hester RE, Harrison RM (eds) Assessment and reclamation of contaminated land. Royal Society of Chemistry, Cambridge, pp 1–20

    Chapter  Google Scholar 

  • Pollard SJT, Duarte-Davison R, Askari K, Stutt E (2005) Managing the risks from petroleum hydrocarbons at contaminated sites: achievements and future research directions. Land Contam Reclam 13:115–122

    Article  Google Scholar 

  • Pradhan SP, Conrad JR, Paterek JR, Srivistava VJ (1998) Potential of phytoremediation for treatment of PAHs in soil at MGP sites. J Soil Contam 7:467–480

    Article  CAS  Google Scholar 

  • Preston S, Coad N, Townsend J, Killham K, Paton GI (2000) Biosensing the acute toxicity of metal interactions: are they additive, synergistic or antagonistic? Environ Toxicol Chem 19:775–780

    Article  CAS  Google Scholar 

  • Pulford ID, Riddell-Black D, Stewart C (2002) Heavy metal uptake by willow clones from sewage sludge-treated soil: the potential for phytoremediation. Int J Phytoremediation 4:59–72

    Article  CAS  Google Scholar 

  • Puschenreiter M, Schnepf A, Millan IM, Fitz WJ, Horak O, Klepp J, Schrefl T, Lombi E, Wenzel WW (2005) Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense. Plant Soil 271:205–218

    Article  CAS  Google Scholar 

  • Rahman MM, Liedl R, Grathwohl P (2004) Sorption kinetics during macropore transport of organic contaminants in soils: laboratory experiments and analytical modelling. Water Resour Res 40(1): art. no. W01503

  • Rajput VS, Higgins AJ, Singley ME (1994) Cleaning of excavated soil contaminated with hazardous organic compounds by washing. Water Environ Res 66:819–827

    CAS  Google Scholar 

  • Rao PSC, Davis GB, Johnston CD (1996) Technologies for enhanced remediation of contaminated soils and aquifers: overview, analysis and case studies. In: Naidu R, Kookana RS, Oliver DP, Rogers S, McLaughrin MJ (eds) Contaminants and the soil environment in the Australasia-Pacific Region. Kluwer, Dordrecht, pp 361–410

    Google Scholar 

  • RCEP (1996) Sustainable use of soils, 19th report. Royal Commission on Environmental Pollution, HMSO, London

    Google Scholar 

  • RCEP (1998) Setting environmental standards, 21st report. Royal Commission on Environmental Pollution, HMSO, London

    Google Scholar 

  • Renoux AY, Sarrazin M, Hawari J, Sunahara GI (2000) Transformation of 2,4,6-trinitrotoluene in soil in the presence of the earthworm Eisenia andrei. Environ Toxicol Chem 19:1473–1480

    Article  CAS  Google Scholar 

  • Ritter WF, Scarborough RW (1995) A review of bioremediation of contaminated soils and groundwater. J Environ Sci Health Part A 30:333–357

    Google Scholar 

  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman, JH, Gregg PEH, de Dominicis V (1997) The nickel hyperacculator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz S, Marco MP, de Alda MJL et al (2005) Biosensors for environmental monitoring. A global perspective. Talanta 65:291–297

    CAS  PubMed  Google Scholar 

  • Romkens P, Bouwman L, Japenga J, Draaisma C (2002) Potentials and drawbacks of chelate enhanced phytoremediation of soils. Environ Pollut 116:109–121

    Article  PubMed  CAS  Google Scholar 

  • Romantschuk M, Sarand I, Petanen T, Peltola R, Jonsson-Vihanne M, Koivula T, Yrjala K, Haahtela K (2000) Means to improve the effect of in situ bioremediation of contaminated soil: an overview of novel approaches. Environ Pollut 107:179–185

    Article  PubMed  CAS  Google Scholar 

  • Ruby MV (2004) Bioavailability of soil-borne chemicals: abiotic assessment tools. Human Ecol Risk Assess 10:647–656

    Article  CAS  Google Scholar 

  • Rulkens WH, Tichy R, Grotenhuis JTC (1998) Remediation of polluted soil and sediment: perspectives and failures. Water Sci Technol 37:27–35

    Article  CAS  Google Scholar 

  • Sahle-Demessie E, Richardson T (2000) Cleaning up pesticide contaminated soils: comparing effectiveness of supercritical fluid extraction with solvent extraction and low temperature thermal desorption. Environ Technol 21:447–456

    CAS  Google Scholar 

  • Saichek RE, Reddy KR (2005) Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: a review. Crit Rev Environ Sci Technol 35:115–192

    Article  CAS  Google Scholar 

  • Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut 136:187–195

    Article  PubMed  CAS  Google Scholar 

  • Scullion J (2003) Phytoextraction of Ni and Zn from moderately contaminated soils. In: Moore HM, Fox HR, S Elliot (eds) Land reclamation; extending the boundaries. AA Balkema, Lisse, pp 179–184

    Google Scholar 

  • Scullion J, Malik A (2000) Earthworm effects on aggregate stability, organic matter composition and disposition, and their relationships. Soil Biol Biochem 32:119–126

    Article  CAS  Google Scholar 

  • Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818

    Article  CAS  Google Scholar 

  • Semple KT, Jones KC, Craven A (2005) Introductory remarks to the special issue. Environ Pollut 133:1–2

    Article  PubMed  CAS  Google Scholar 

  • Shaw PJA (1992) A preliminary study of successional changes in vegetation and soil development on unamended fly ash (PFA) in Southern England. J Appl Ecol 29:728–736

    Article  Google Scholar 

  • Siebe C (1996) Heavy metal availability to plants in soils irrigated with wastewater from Mexico City. Water Sci Technol 32:29–34

    Article  Google Scholar 

  • Sheppard MI, Thibault DH (1990) Default soil solid/liquid partition coefficients, KdS, for four major soil types: a compendium. Health Phys 59:471–482

    PubMed  CAS  Google Scholar 

  • Sheppard SC, Gaudet C, Sheppard MI, Cureton PM, Wong MP (1992) The development of assessment and remediation guidelines for contaminated soils, a review of the science. Can J Soil Sci 72:359–394

    CAS  Google Scholar 

  • Shin M, Barrington SF, Marshall WD, Kim J-W (2005) Effect of surfactant alkyl chain length on soil cadmium desorption using surfactant/ligand systems. Chemosphere 58:735–742

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui S, Adams WA, Scullion J (2001) The phytotoxicity and degradation of diesel hydrocarbons in soil. J Plant Nutr Soil Sci 164:631–635

    Article  CAS  Google Scholar 

  • Singer AC, van der Gast CJ, Thompson IP (2005) Perspectives and vision for strain selection in bioaugmentation. Trends Biotech 23:74–77

    Article  CAS  Google Scholar 

  • Slaveykova VI, Wilkinson KJ (2005) Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model. Environ Chem 2:9–24

    Article  CAS  Google Scholar 

  • Smith MA, Ellis AC (1986) An investigation into methods used to assess gas works sites for reclamation. Reclam Reveg Res 4:183–209

    CAS  Google Scholar 

  • Solano-Serena F, Marchal R, Vandecasteele JP (2001) Biodegradation of gasoline in the environment: from overall assessment to the case of recalcitrant hydrocarbons. Oil Gas Sci Technol 56:479–498

    Article  CAS  Google Scholar 

  • SolerRovira P, SolerSoler J, SolerRovira J, Polo A (1996) Agricultural use of sewage sludge and its regulation. Fertil Res 43:173–177

    Article  Google Scholar 

  • Sparks DL (2000) New frontiers in elucidating the kinetics and mechanisms of metal and oxyanion sorption at the soil mineral/water interface. J Plant Nutr Soil Sci 163:563–570

    Article  CAS  Google Scholar 

  • Staunton S (2004) Sensitivity analysis of the distribution coefficient, K d, of nickel with changing soil chemical properties. Geoderma 122:281–290

    Article  CAS  Google Scholar 

  • Stegmann R, Brunner G, Calmano, W Matz G (2001) Treatment of contaminated soil. Fundamentals, analysis, applications. Springer, Berlin Heidelberg New York, pp 660

    Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Swartjes FA (1999) Risk-based assessment of soil and groundwater quality in the Netherlands: standards and remediation urgency. Risk Anal 19:1235–1249

    Article  PubMed  CAS  Google Scholar 

  • Syms P (1998) The redevelopment of contaminated land for housing use. In: Harder W, Arendt F, Hart I (eds) Contaminated soils ’98. Thomas Telford, London, pp 671–679

    Google Scholar 

  • Tiller KG (1996) Soil contamination issues: past, present and future, a personal perspective In: Naidu R, Kookana RS, Oliver DP, Rogers S, McLaughrlin MJ (eds) Contaminants and the soil environment in the Australasia–Pacific region. Kluwer, Dordrecht, pp 1–28

    Google Scholar 

  • Tokunaga TK, Wan JM, Firestone MK, Hazen TC, Olson KR, Herman DJ, Sutton SR, Lanzirotti (2003) An in situ reduction of chromium(VI) in heavily contaminated soils through organic carbon amendment. J Environ Qual 32:1641–1649

    PubMed  CAS  Google Scholar 

  • Tungittiplakorn W, Cohen C, Lion LW (2005) Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol 39:1354–1358

    Article  PubMed  CAS  Google Scholar 

  • US-EPA (1990) Federal register 55(126) 261–302 40 CFR

  • US-EPA (1995) Contaminants and remedial options at selected metal-contaminated sites, EPA 540, R-95/512. Washington, DC

  • US-EPA (1999) Use of monitored natural attenuation at Superfund RCRA corrective action and underground storage tanks. Directive Vol 9200 EPA Office of Solid Waste and Emergency Response, Washington DC, pp 4–17

  • vanBrummelen TC, vanGestel CAM, Verweij RA (1996) Long-term toxicity of five polycyclic aromatic hydrocarbons for the terrestrial isopods Oniscus asellus and Porcellio scaber. Environ Toxicol Chem 15:1199–1210

    Article  CAS  Google Scholar 

  • vanDecasteele B, Meers E, Vervaeke P, de Vos B, Quataert P, Tack FMG (2005) Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere 58:995–1002

    Article  PubMed  CAS  Google Scholar 

  • Virkutyte J, Sillanpaa M, Latostenmaa P (2002) Electrokinetic soil remediation—critical overview. Sci Total Environ 289:97–121

    Article  PubMed  CAS  Google Scholar 

  • Volkering F, Breure AM, Rulkens WH (1998) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    Article  CAS  Google Scholar 

  • Wang SL, Mulligan CN (2004) An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere 57:1079–1089

    Article  PubMed  CAS  Google Scholar 

  • Weeks KR, Bruell CJ, Mohanty NR (2000) Use of Fenton’s reagent for the degradation of TCE in aqueous systems and soil slurries. Soil Sediment Contam 9:331–345

    Article  CAS  Google Scholar 

  • Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81:229–249

    Article  PubMed  CAS  Google Scholar 

  • Winterhalder K (1996) Environmental degradation and rehabilitation of the landscape around Sudbury, a major mining and smelting area. Environ Rev 4:185–224

    CAS  Google Scholar 

  • Wood P (2001) Remediation methods for contaminated land. In: Hester RE, Harrison RM (eds) Assessment and reclamation of contaminated land. Issues in environmental science and technology. Royal Society of Chemistry, Cambridge, pp 115–139

    Chapter  Google Scholar 

  • Yeung PY, Johnson RL, Xu JG (1997) Biodegradation of petroleum hydrocarbons in soil as affected by heating and forced aeration. J Environ Qual 26:1511–1516

    Article  CAS  Google Scholar 

  • Yoo JY, Choi J, Lee T, Park JW (2004) Organobentonite for sorption and degradation of phenol in the presence of heavy metals. Water Air Soil Pollut 154:225–237

    Article  CAS  Google Scholar 

  • Zhang WX, Bouwer EJ, Wilson L, Durant N (1995) Biotransformation of aromatic hydrocarbons in subsurface biofilms. Water Sci Technol 31:1–14

    Article  CAS  Google Scholar 

  • Zhang WX, Bouwer EJ, Ball WP (1998) Bioavailability of hydrophobic organic contaminants: effects and implications of sorption-related mass transfer on bioremediation. Ground Water Monit Remediat 18:126–138

    Article  Google Scholar 

  • Zhou QX, Hua T (2004) Bioremediation: a review of applications and problems to be resolved. Prog Nat Sci 14:937–944

    Article  CAS  Google Scholar 

  • Zimmerman AR, Chorover J, Goyne KW, Brantley SL (2004) Protection of mesopore-adsorbed organic matter from enzymatic degradation. Environ Sci Technol 38:4542–4548

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Scullion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scullion, J. Remediating polluted soils. Naturwissenschaften 93, 51–65 (2006). https://doi.org/10.1007/s00114-005-0079-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-005-0079-5

Keywords

Navigation