Skip to main content
Log in

High-risk-Stressfrakturen beim Leistungssportler

High-risk stress fractures in competitive athletes

  • Leitthema
  • Published:
Die Unfallchirurgie Aims and scope Submit manuscript

Zusammenfassung

Knochenstressverletzungen sind chronische Überlastungsreaktionen des Knochens, die durch belastungsabhängig auftretende, fokal empfundene Schmerzen und punktuelle Druckdolenz am Ort der Verletzung gekennzeichnet sind. Der strukturell normale Knochen ermüdet aufgrund repetitiver submaximaler Belastungen oder/und nichtadäquater Regeneration. Bestimmte Belastungsfrakturen des Oberschenkelhalses (Zugseite), der Kniescheibe, der vorderen Tibiakante, des Innenknöchels, des Talus, des Os naviculare pedis, des proximalen 5. Mittelfußknochens und der Sesambeine unter dem Metatarsale-I-Köpfchen neigen zu Komplikationen (komplette Fraktur, verzögerte Heilung, Pseudarthrose, Dislokation, Arthrose). Diese Verletzungen werden als Hochrisiko (High-risk)-Stressfrakturen bezeichnet. Bei Verdacht auf eine High-risk-Stressfraktur müssen die Diagnostik und Therapie „aggressiv“ erfolgen. Vollständige Ruhigstellung ohne Belastung oder Operation müssen individuell in Betracht gezogen werden. Die Ergebnisse sowohl der konservativen als auch der operativen Behandlung werden im Vergleich zu Low-risk-Stressverletzungen als weniger gut beschrieben.

Abstract

Bone stress injuries are chronic overload reactions of the bone, which are characterized by the load-dependent occurrence of locally perceived pain and tenderness on palpation at the site of the injury. Structurally normal bone becomes fatigued as a result of repetitive submaximal loading and/or inadequate regeneration. Certain stress fractures of the femoral neck (tension side), patella, anterior tibial cortex, medial malleolus, talus, tarsal navicular bone, proximal fifth metatarsal, and sesamoid bones of the great toe tend to develop complications (complete fractures, delayed union, pseudarthrosis, dislocation, arthrosis). These injuries are classified as high-risk stress fractures. Aggressive diagnostics and treatment are recommended when a high-risk stress fracture is suspected. Treatment is frequently different from low-risk stress fractures, including prolonged non-weight-bearing immobilization. In rare cases, surgery is indicated when conservative treatment fails, when a complete or non-healing fracture develops, or in cases of dislocation. The outcomes of both conservative and operative treatment are described as less successful compared with low-risk stress injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Arendt EA, Griffiths HJ (1997) The use of MR imaging in the assessment and clinical management of stress reactions of bone in high-performance athletes. Clin Sports Med 16:291–306

    Article  CAS  PubMed  Google Scholar 

  2. Baumbach SF, Prall WC, Braunstein M et al (2018) Frakturen der Metatarsale Fünf Basis – eine Neubetrachtung. Unfallchirurg 121:723–729

    Article  CAS  PubMed  Google Scholar 

  3. Boden BP, Osbahr DC (2000) High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg 8:344–353

    Article  CAS  PubMed  Google Scholar 

  4. Burr DB (2011) Why bones bend but don’t break. J Musculoskelet Neuronal Interact 11:270–285

    CAS  PubMed  Google Scholar 

  5. Caesar BC, Mccollum GA, Elliot R et al (2013) Stress fractures of the tibia and medial malleolus. Foot Ankle Clin 18:339–355

    Article  PubMed  Google Scholar 

  6. Edwards PH Jr., Wright ML, Hartman JF (2005) A practical approach for the differential diagnosis of chronic leg pain in the athlete. Am J Sports Med 33:1241–1249

    Article  PubMed  Google Scholar 

  7. Fredericson M, Bergman AG, Hoffman KL et al (1995) Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med 23:472–481

    Article  CAS  PubMed  Google Scholar 

  8. Fredericson M, Jennings F, Beaulieu C et al (2006) Stress fractures in athletes. Top Magn Reson Imaging 17:309–325

    Article  PubMed  Google Scholar 

  9. Gaeta M, Minutoli F, Scribano E et al (2005) CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology 235:553–561

    Article  PubMed  Google Scholar 

  10. Gross CE, Nunley JA (2015) Navicular stress fractures. Foot Ankle Int 36:1117–1122

    Article  PubMed  Google Scholar 

  11. Kaeding CC, Miller TL (2020) Classification of stress fractures. In: Miller TL, Kaeding CC (Hrsg) Stress fractures in athletes: diagnosis and management. Springer, Cham, S 65–75

    Chapter  Google Scholar 

  12. Lohrer H (2002) Überlastungsschäden. In: Wirth CJ (Hrsg) Fuß. Thieme, Stuttgart, S 489–530

    Google Scholar 

  13. Lohrer H, Malliaropoulos N, Korakakis V et al (2019) Exercise-induced leg pain in athletes: diagnostic, assessment, and management strategies. Phys Sportsmed 47:47–59

    Article  PubMed  Google Scholar 

  14. Mandell JC, Khurana B, Smith SE (2017) Stress fractures of the foot and ankle, part 2: site-specific etiology, imaging, and treatment, and differential diagnosis. Skelet Radiol 46:1165–1186

    Article  Google Scholar 

  15. Mayer SW, Joyner PW, Almekinders LC et al (2014) Stress fractures of the foot and ankle in athletes. Sports Health 6:481–491

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mccormick F, Nwachukwu BU, Provencher MT (2012) Stress fractures in runners. Clin Sports Med 31:291–306

    Article  PubMed  Google Scholar 

  17. McInnis KC, Ramey LN (2016) High-risk stress fractures: diagnosis and management. PM&R 8:S113–S124

    Article  Google Scholar 

  18. Miller TL (2020) The holistic approach to stress fracture treatment. In: Miller TL, Kaeding CC (Hrsg) Stress fractures in athletes: diagnosis and management. Springer, Cham, S 91–106

    Chapter  Google Scholar 

  19. Morimoto S, Iseki T, Morooka T et al (2021) The effectiveness of Intramedullary screw fixation using the Herbert screw for fifth metatarsal stress fractures in high-level athletes. Am J Sports Med 49:4001–4007

    Article  PubMed  Google Scholar 

  20. Morris JM (1968) Fatigue fractures. Calif Med 108:268–274

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mountjoy M, Sundgot-Borgen JK, Burke LM et al (2018) IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br J Sports Med 52:687–697

    Article  PubMed  Google Scholar 

  22. Niva MH, Sormaala MJ, Kiuru MJ et al (2007) Bone stress injuries of the ankle and foot: an 86-month magnetic resonance imaging-based study of physically active young adults. Am J Sports Med 35:643–649

    Article  PubMed  Google Scholar 

  23. Orava S, Hulkko A (1984) Stress fracture of the mid-tibial shaft. Acta Orthop Scand 55:35–37

    Article  CAS  PubMed  Google Scholar 

  24. Robertson GA, Wood AM (2017) Lower limb stress fractures in sport: optimising their management and outcome. World J Orthop 8:242–255

    Article  PubMed  PubMed Central  Google Scholar 

  25. Robertson GA, Wood AM (2015) Return to sports after stress fractures of the tibial diaphysis: a systematic review. Br Med Bull 114:95–111

    Article  CAS  PubMed  Google Scholar 

  26. Saxena A, Behan SA, Valerio DL et al (2017) Navicular stress fracture outcomes in athletes: analysis of 62 injuries. J Foot Ankle Surg 56:943–948

    Article  PubMed  Google Scholar 

  27. Shakked RJ, Walters EE, O’malley MJ (2017) Tarsal navicular stress fractures. Curr Rev Musculoskelet Med 10:122–130

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shindle MK, Endo Y, Warren RF et al (2012) Stress fractures about the tibia, foot, and ankle. J Am Acad Orthop Surg 20:167–176

    Article  PubMed  Google Scholar 

  29. Sturznickel J, Hinz N, Delsmann MM et al (2022) Impaired bone microarchitecture at distal radial and tibial reference locations is not related to injury site in athletes with bone stress injury. Am J Sports Med 50:3381–3389

    Article  PubMed  PubMed Central  Google Scholar 

  30. Taki M, Iwata O, Shiono M et al (2007) Extracorporeal shock wave therapy for resistant stress fracture in athletes: a report of 5 cases. Am J Sports Med 35:1188–1192

    Article  PubMed  Google Scholar 

  31. Torg JS, Moyer J, Gaughan JP et al (2010) Management of tarsal navicular stress fractures: conservative versus surgical treatment: a meta-analysis. Am J Sports Med 38:1048–1053

    Article  PubMed  Google Scholar 

  32. Uhl M (2016) Stressfrakturen. Radiologe 56:631–644

    Article  CAS  PubMed  Google Scholar 

  33. Wright AA, Hegedus EJ, Lenchik L et al (2016) Diagnostic accuracy of various imaging modalities for suspected lower extremity stress fractures: a systematic review with evidence-based recommendations for clinical practice. Am J Sports Med 44:255–263

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Lohrer.

Ethics declarations

Interessenkonflikt

H. Lohrer gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Thomas Mittlmeier, Rostock

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohrer, H. High-risk-Stressfrakturen beim Leistungssportler. Unfallchirurgie 126, 848–855 (2023). https://doi.org/10.1007/s00113-023-01339-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-023-01339-4

Schlüsselwörter

Keywords

Navigation