Skip to main content

Classification of Stress Fractures

  • Chapter
  • First Online:
Stress Fractures in Athletes

Abstract

Stress fractures represent a fatigue failure of bone, occurring along a spectrum of severity of structural injury with healing potential that varies by location. Many stress fracture classification systems currently exist in the literature. These systems employ various imaging modalities, but few include clinical parameters or have been validated for reliability between evaluators. Though many are generalizable, a gold standard classification system for grading stress fractures has yet to be determined.

In order to accurately study and communicate about a pathologic clinical condition, one must be able to accurately describe it. As most clinical pathologies do not exist as a simple “present / not present” entity with a single consistent severity in a consistently equal environment, their description typically requires a classification system. This chapter will encompass the description and classification of stress fractures of bone. In order to understand the rationale behind describing stress fractures, a brief review of the pathophysiology of stress fractures will be included. This chapter will be divided into the following sections:

  • Defining a Stress Fracture

  • Features of a Quality Classification System

  • High-Risk vs. Low-Risk Stress Fractures

  • Current and Historical Classification Systems

  • Kaeding-Miller Classification System

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breithaupt J. Zur pathologie des menschlichen fubes. Med Zeitg. 1855;23:169–77.

    Google Scholar 

  2. Anderson MW, Greenspan A. Stress fractures. Radiology. 1996;199(1):1–12.

    CAS  Google Scholar 

  3. Kaeding CC, Spindler KP, Amendola A. Management of troublesome stress fractures. Instr Course Lect. 2004;53:455–69.

    Google Scholar 

  4. Kaeding CC, Yu JR, Wright R, Amendola A, Spindler KP. Management and return to play of stress fractures. Clin J Sport Med. 2005;15(6):442–7.

    Google Scholar 

  5. Kaeding CC, Najarian RG. Stress fractures: classification and management. Phys Sports Med. 2010;38(3):45–54.

    Google Scholar 

  6. Wall J, Feller JF. Imaging of stress fractures in runners. Clin Sports Med. 2006;25(4):781–802.

    Google Scholar 

  7. Audige L, et al. How reliable are reliability studies of fracture classifications? Acta Orthop Scand. 2004;75(2):184–94.

    Google Scholar 

  8. Garbuz DS, Masri BA, Esdaile J, Duncan CP. Classification systems in orthopaedics. J Am Acad Orthop Surg. 2002;10(4):290–7.

    Google Scholar 

  9. Agarwal A. Jones’ fracture. Tex Med. 1993;89(6):60–1.

    CAS  Google Scholar 

  10. Dutton J, Bromhead SE, Speed CA, Menzies AR, Peters AM. Clinical value of grading the scintigraphic appearances of tibial stress fractures in military recruits. Clin Nucl Med. 2002;27(1):18–21.

    Google Scholar 

  11. Egol KA, Koval KJ, Kummer F, et al. Stress fractures of the femoral neck. Clin Orthop Relat Res. 1998;348:72–8.

    Google Scholar 

  12. Fetzer GB, Wright RW. Metatarsal shaft fractures and fractures of the proximal fifth metatarsal. Clin Sports Med. 2006;25(1):139–50.

    Google Scholar 

  13. Hod N, Ashkenazi I, Levi Y, et al. Characteristics of skeletal stress fractures in female military recruits of the Israel defense forces on bone scintigraphy. Clin Nucl Med. 2006;31(12):742–9.

    Google Scholar 

  14. Niva MH, Sormaala MJ, Kiuru MJ, Haataja R, Ahovuo JA, Pihlajamaki HK. Bone stress injuries of the ankle and foot: an 86-month magnetic resonance imaging-based study of physically active young adults. Am J Sports Med. 2007;35(4):643–9.

    Google Scholar 

  15. Sormaala MJ, Niva MH, Kiuru MJ, Mattila VM, Pihlajamäki HK. Bone stress injuries of the talus in military recruits. Bone. 2006;39(1):199–204.

    Google Scholar 

  16. Strayer SM, Reece SG, Petrizzi MJ. Fractures of the proximal fifth metatarsal. Am Fam Physician. 1999;59(9):2516–22.

    CAS  Google Scholar 

  17. Boden BP, Osbahr DC. High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg. 2000;8(6):344–53.

    CAS  Google Scholar 

  18. Boden BP, Osbahr DC, Jimenez C. Low-risk stress fractures. Am J Sports Med. 2001;29(1):100–11.

    CAS  Google Scholar 

  19. Arendt E, Agel J, Heikes C, Griffiths H. Stress injuries to bone in college athletes: a retrospective review of experience at a single institution. Am J Sports Med. 2003;31(6):959–68.

    Google Scholar 

  20. Diehl JJ, Best TM, Kaeding CC. Classification and return-to-play considerations for stress fractures. Clin Sports Med. 2006;25(1):17–28: vii.

    Google Scholar 

  21. Miller T, Kaeding CC, Flanigan D. The classification systems of stress fractures: a systematic review. Phys Sportsmed. 2011;39(1):93–100.

    Google Scholar 

  22. Kaeding CC, Miller TL. The comprehensive description of stress fractures: a new classification system. J Bone Joint Surg Am. 2013;95:1214–20.

    Google Scholar 

  23. Arendt EA, Griffiths HJ. The use of MR imaging in the assessment and clinical management of stress reactions of bone in high-performance athletes. Clin Sports Med. 1997;16(2):291–306.

    CAS  Google Scholar 

  24. Blickenstaff LD, Morris JM. Fatigue fracture of the femoral neck. J Bone Joint Surg Am. 1966;48(6):1031–47.

    CAS  Google Scholar 

  25. Brukner P, Bradshaw C, Bennell K. Managing common stress fractures: let risk level guide treatment. Phys Sportsmed. 1998;26(8):39–47.

    CAS  Google Scholar 

  26. Chisin R, Milgrom C, Giladi M, Stein M, Margulies J, Kashtan H. Clinical significance of nonfocal scintigraphic findings in suspected tibial stress fractures. Clin Orthop Relat Res. 1987;220(220):200–5.

    Google Scholar 

  27. Devas MB. Stress fractures of the femoral neck. J Bone Joint Surg Br. 1965;47(4):728–38.

    CAS  Google Scholar 

  28. Ernst J. Stress fracture of the neck of the femur. J Trauma. 1964;4:71–83.

    CAS  Google Scholar 

  29. Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med. 1995;23(4):472–81.

    CAS  Google Scholar 

  30. Fullerton LR Jr, Snowdy HA. Femoral neck stress fractures. Am J Sports Med. 1988;16(4):365–77.

    Google Scholar 

  31. Fullerton LR Jr. Femoral neck stress fractures. Sports Med. 1990;9(3):192–7.

    Google Scholar 

  32. Gaeta M, Minutoli F, Vinci S, Salamone I, D’Andrea L, Bitto L, Magaudda L, Blandino A. High-resolution CT grading of tibial stress reactions in distance runners. AJR Am J Roentgenol. 2006;187(3):789–93.

    Google Scholar 

  33. Jones BH, Harris JM, Vinh TN, Rubin C. Exercise-induced stress fractures and stress reactions of bone: epidemiology, etiology, and classification. Exerc Sport Sci Rev. 1989;17:379–422.

    CAS  Google Scholar 

  34. Kiuru MJ, Pihlajamäki HK, Perkiö JP, Ahovuo JA. Dynamic contrast-enhanced MR imaging in symptomatic bone stress of the pelvis and the lower extremity. Acta Radiol. 2001;42(3):277–85.

    CAS  Google Scholar 

  35. McBryde AM Jr. Stress fractures in athletes. J Sports Med. 1975;3(5):212–7.

    Google Scholar 

  36. Shin AY, Gillingham BL. Fatigue fractures of the femoral neck in athletes. J Am Acad Orthop Surg. 1997;5(6):293–302.

    CAS  Google Scholar 

  37. Romani WA, Perrin DH, Dussault RG, Ball DW, Kahler DM. Identification of tibial stress fractures using therapeutic continuous ultrasound. J Orthop Sports Phys Ther. 2000;30(8):444–52.

    CAS  Google Scholar 

  38. Roub LW, Gumerman LW, Hanley EN Jr, Clark MW, Goodman M, Herbert DL. Bone stress: a radionuclide imaging perspective. Radiology. 1979;132(2):431–8.

    CAS  Google Scholar 

  39. Savoca CJ. Stress fractures. A classification of the earliest radiographic signs. Radiology. 1971;100(3):519–24.

    CAS  Google Scholar 

  40. Saxena A, Fullem B, Hannaford D. Results of treatment of 22 navicular stress fractures and a new proposed radiographic classification system. J Foot Ankle Surg. 2000;39(2):96–103.

    CAS  Google Scholar 

  41. Saxena A, Fullem B. Navicular stress fractures: a prospective study on athletes. Foot Ankle Int. 2006;27(11):917–21.

    Google Scholar 

  42. Wilson ES Jr, Katz FN. Stress fractures. An analysis of 250 consecutive cases. Radiology. 1969;92(3):481–6. passim

    Google Scholar 

  43. Yao L, Johnson C, Gentili A, Lee JK, Seeger LL. Stress injuries of bone: analysis of MR imaging staging criteria. Acad Radiol. 1998;5(1):34–40.

    CAS  Google Scholar 

  44. Zwas ST, Elkanovitch R, Frank G. Interpretation and classification of bone scintigraphic findings in stress fractures. J Nucl Med. 1987;28(4):452–7.

    CAS  Google Scholar 

  45. Matheson GO, Clement DB, McKenzie DC, Taunton JE, Lloyd-Smith DR, Macintyre JG. Scintigraphic uptake of 99mTc at non-painful sites in athletes with stress fractures. The concept of bone strain. Sports Med. 1987 Jan-Feb;4(1):65–75.

    CAS  Google Scholar 

  46. Nussbaum AR, Treves ST, Micheli L. Bone stress lesions in ballet dancers: scintigraphic assessment. AJR Am J Roentgenol. 1988 Apr;150(4):851–5.

    CAS  Google Scholar 

  47. Bergman AG, Fredericson M, Ho C, Matheson GO. Asymptomatic tibial stress reactions: MRI detection and clinical follow-up in distance runners. AJR Am J Roentgenol. 2004;183(3):635–8.

    Google Scholar 

  48. Groshar D, Lam M, Even-Sapir E, Israel O, Front D. Stress fractures and bone pain: are they closely associated? Injury. 1985;16(8):526–8.

    CAS  Google Scholar 

  49. Jamieson M, Everson S, Siegel C, Miller TL. Expected time to return to athletic participation following stress fracture in Division I collegiate athletes. Sports Health. 2018;10(4):340–4.

    Google Scholar 

  50. Jamieson M, Schroeder A, Day J, Miller TL. Time to return to running after tibial stress fracture in female division I collegiate track and field. Curr Orthop Pract. 2017;31(4):393–7.

    Google Scholar 

  51. Miller TL, Kaeding CC, Rodeo SA. Emerging Options for Biologic Enhancement of Stress Fracture Healing in Athletes. J Amer Acad Ortho Surg. Published on line prior to print July 2019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Kaeding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaeding, C.C., Miller, T.L. (2020). Classification of Stress Fractures. In: Miller, T.L., Kaeding, C.C. (eds) Stress Fractures in Athletes. Springer, Cham. https://doi.org/10.1007/978-3-030-46919-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46919-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46918-4

  • Online ISBN: 978-3-030-46919-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics