Skip to main content

Advertisement

Log in

Update 2022 Pseudarthrosen

Bildgebende Diagnostik, Klassifikation und Behandlungsalgorithmen

Update on non-unions 2022

Imaging diagnostics, classification and treatment algorithms

  • Leitthema
  • Published:
Die Unfallchirurgie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Frakturheilung ist ein komplexer Regenerationsprozess. Eine nichtkonsolidierte Fraktur, die ohne weiteren chirurgischen Eingriff nicht heilen wird, wird als Pseudarthrose bezeichnet. Die Ursachen sind multifaktoriell. Die bildgebende Diagnostik ist eine zentrale Säule und ermöglicht einen Einblick in die morphologischen und biologischen Merkmale der Fraktur als Basis für die optimale chirurgische Behandlungsentscheidung.

Ziel der Arbeit

Für die optimale Therapie sind die Kenntnis der Frakturheilung, die zielgerichtete radiologische und nuklearmedizinische Diagnostik sowie die interdisziplinäre standardisierte Klassifizierung von herausragender Bedeutung.

Methoden

In diesem Beitrag werden die bewährten und modernen diagnostischen Verfahren vorgestellt, ein Überblick über die aktuell genutzten Scoring- und Klassifikationsmodelle gegeben und das optimale therapeutische Vorgehen auf Basis des erweiterten „Diamant-Konzepts“ thematisiert. Ein mögliches diagnostisches und therapeutisches Vorgehen wird anhand eines Algorithmus aufgezeigt.

Schlussfolgerung

Für eine erfolgreiche Pseudarthrosentherapie ist eine zielgerichtete radiologische und nuklearmedizinische Diagnostik mit altbewährten, aber auch neuesten Methoden, wie dem „dynamic contrast-enhanced magnetic resonance imaging“ (DCE-MRT) und der Hybridbildgebung, notwendig. Eine exakte Einteilung der Pseudarthrosen anhand von zusätzlichen Klassifikationsmodellen ermöglicht es, die optimale chirurgische Therapie frühzeitig festzulegen und durchzuführen.

Abstract

Background

Fracture healing is a complex regenerative process. An unconsolidated fracture that will not heal without further surgical intervention is called non-union. The causes are multifactorial. Diagnostic imaging is a central pillar and provides insights into the morphology and biology of the fracture as a basis for optimal surgical treatment decisions.

Aim

Knowledge of fracture healing, targeted radiological and nuclear medical diagnostics, and interdisciplinary standardized classification are of high importance for optimal treatment.

Methods

In this article, the proven and modern diagnostic procedures are presented, an overview of the currently used scoring and classification models is given and the optimal therapeutic approach based on the extended “diamond concept” is addressed. A possible diagnostic and therapeutic approach is shown using an algorithm.

Conclusion

For successful treatment of pseudarthrosis, targeted radiological and nuclear medical diagnostics with old established but also newest methods, such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and hybrid imaging, are necessary. An exact classification of non-unions using additional classification models makes it possible to determine and carry out the optimal surgical treatment at an early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Mills LA, Aitken SA, Simpson A (2017) The risk of non-union per fracture: current myths and revised figures from a population of over 4 million adults. Acta Orthop 88(4):434–439. https://doi.org/10.1080/17453674.2017.1321351

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zura R, Xiong Z, Einhorn T, Watson JT, Ostrum RF, Prayson MJ, Rocca DGJ, Mehta S, McKinley T, Wang Z, Steen RG (2016) Epidemiology of fracture nonunion in 18 human bones. JAMA Surg 151(11):e162775. https://doi.org/10.1001/jamasurg.2016.2775

    Article  PubMed  Google Scholar 

  3. Schmidmaier G, Moghaddam A (2015) Pseudarthrosen langer Röhrenknochen. Z Orthop Unfall 153(06):659–676

    Article  CAS  Google Scholar 

  4. Calori GM, Colombo M, Mazza EL, Mazzola S, Malagoli E, Marelli N, Corradi A (2014) Validation of the Non-Union Scoring System in 300 long bone non-unions. Injury 45(Suppl 6):S93–S97. https://doi.org/10.1016/j.injury.2014.10.030

    Article  PubMed  Google Scholar 

  5. Schmal H, Brix M, Bue M, Ekman A, Ferreira N, Gottlieb H, Kold S, Taylor A, Toft Tengberg P, Ban I (2020) Nonunion—consensus from the 4th annual meeting of the Danish orthopaedic trauma society. EFORT Open Rev 5(1):46–57. https://doi.org/10.1302/2058-5241.5.190037

    Article  PubMed  PubMed Central  Google Scholar 

  6. Braun KF, Hanschen M, Biberthaler P (2019) Definition, Risikofaktoren und Klassifikationsmodelle von Pseudarthrosen. OP-JOURNAL 35(03):217–224

    Article  Google Scholar 

  7. Nicholson JA, Fox B, Dhir R, Simpson A, Robinson CM (2021) The accuracy of computed tomography for clavicle non-union evaluation. Shoulder Elbow 13(2):195–204. https://doi.org/10.1177/1758573219884067

    Article  PubMed  Google Scholar 

  8. Hackenbroch C, Schüle S, Halt D, Zengerle L, Beer M (2022) Metal artifact reduction with tin prefiltration in computed tomography: a cadaver study for comparison with other novel techniques. Invest Radiol 57(3):194–203. https://doi.org/10.1097/rli.0000000000000823

    Article  PubMed  Google Scholar 

  9. Fischer C, Nissen M, Schmidmaier G, Bruckner T, Kauczor HU, Weber MA (2017) Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the prediction of non-union consolidation. Injury 48(2):357–363. https://doi.org/10.1016/j.injury.2017.01.021

    Article  PubMed  Google Scholar 

  10. Krammer D, Schmidmaier G, Weber MA, Doll J, Rehnitz C, Fischer C (2018) Contrast-enhanced ultrasound quantifies the perfusion within tibial non-unions and predicts the outcome of revision surgery. Ultrasound Med Biol 44(8):1853–1859. https://doi.org/10.1016/j.ultrasmedbio.2018.04.013

    Article  PubMed  Google Scholar 

  11. Doll J, Gross S, Weber MA, Schmidmaier G, Fischer C (2019) The AMANDUS project-advanced microperfusion assessed non-union diagnostics with contrast-enhanced ultrasound (CEUS) for the detection of infected lower extremity non-unions. Ultrasound Med Biol 45(9):2281–2288. https://doi.org/10.1016/j.ultrasmedbio.2019.05.007

    Article  PubMed  Google Scholar 

  12. Wenter V, Müller J‑P, Albert NL, Lehner S, Fendler WP, Bartenstein P, Cyran CC, Friederichs J, Militz M, Hacker M, Hungerer S (2016) The diagnostic value of [18F]FDG PET for the detection of chronic osteomyelitis and implant-associated infection. Eur J Nucl Med Mol Imaging 43(4):749–761. https://doi.org/10.1007/s00259-015-3221-4

    Article  PubMed  Google Scholar 

  13. Sollini M, Trenti N, Malagoli E, Catalano M, Di Mento L, Kirienko A, Berlusconi M, Chiti A, Antunovic L (2019) 18F]FDG PET/CT in non-union: improving the diagnostic performances by using both PET and CT criteria. Eur J Nucl Med Mol Imaging 46(8):1605–1615. https://doi.org/10.1007/s00259-019-04336-1

    Article  CAS  PubMed  Google Scholar 

  14. Glaudemans AWJM, Jutte PC, Cataldo MA, Cassar-Pullicino V, Gheysens O, Borens O, Trampuz A, Wörtler K, Petrosillo N, Winkler H, Signore A, Sconfienza LM (2019) Consensus document for the diagnosis of peripheral bone infection in adults: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement). Eur J Nucl Med Mol Imaging 46(4):957–970. https://doi.org/10.1007/s00259-019-4262-x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Meller J, Sahlmann C, Ivancevic V DGN-Handlungsempfehlung (S1-Leitlinie) Differentialindikation für verschiedene radioaktive Arzneimittel bei unterschiedlichen entzündlichen Erkrankungen Stand: 6/2015–AWMF-Registernummer: 031–018. Herausgeber Deutsche Gesellschaft für Nuklearmedizin e. V. In.

  16. Linke R, Weidemann H, Militz M (2009) Bildgebende Diagnostik der Osteitis. Trauma Berufskrankh 11(2):193–202. https://doi.org/10.1007/s10039-008-1470-1

    Article  Google Scholar 

  17. Wong KK, Piert M (2013) Dynamic bone imaging with 99mTc-labeled diphosphonates and 18F-NaF: mechanisms and applications. J Nucl Med 54(4):590–599. https://doi.org/10.2967/jnumed.112.114298

    Article  CAS  PubMed  Google Scholar 

  18. Weber B, Cech O (1973) Pseudarthrosen–Pathophysiologie. Biomechanik, Therapie Ergebnisse. Huber, Bern, Stuttgart, Wien

    Google Scholar 

  19. Whelan DB, Bhandari M, Stephen D, Kreder H, McKee MD, Zdero R, Schemitsch EH (2010) Development of the radiographic union score for tibial fractures for the assessment of tibial fracture healing after intramedullary fixation. J Trauma 68(3):629–632. https://doi.org/10.1097/TA.0b013e3181a7c16d

    Article  PubMed  Google Scholar 

  20. Leow JM, Clement ND, Tawonsawatruk T, Simpson CJ, Simpson AH (2016) The radiographic union scale in tibial (RUST) fractures: Reliability of the outcome measure at an independent centre. Bone Joint Res 5(4):116–121. https://doi.org/10.1302/2046-3758.54.2000628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frank T, Osterhoff G, Sprague S, Garibaldi A, Bhandari M, Slobogean GP (2016) The radiographic union score for hip (RUSH) identifies radiographic nonunion of femoral neck fractures. Clin Orthop Relat Res 474(6):1396–1404. https://doi.org/10.1007/s11999-015-4680-4

    Article  PubMed  PubMed Central  Google Scholar 

  22. O’Halloran K, Coale M, Costales T, Zerhusen T Jr., Castillo RC, Nascone JW, O’Toole RV (2016) Will My tibial fracture heal? Predicting nonunion at the time of definitive fixation based on commonly available variables. Clin Orthop Relat Res 474(6):1385–1395. https://doi.org/10.1007/s11999-016-4821-4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chloros GD, Kanakaris NK, Vun JSH, Howard A, Giannoudis PV (2021) Scoring systems for early prediction of tibial fracture non-union: an update. Int Orthop 45(8):2081–2091. https://doi.org/10.1007/s00264-021-05088-0

    Article  PubMed  Google Scholar 

  24. Paley D, Catagni MA, Argnani F, Villa A, Benedetti GB, Cattaneo R (1989) Ilizarov treatment of tibial nonunions with bone loss. Clin Orthop Relat Res 241:146–165

    Article  Google Scholar 

  25. Clausen J‑D, Mommsen P, Pacha OT, Winkelmann M, Krettek C, Omar M (2022) Management von frakturassoziierten Infektionen. Unfallchirurg 125(1):41–49. https://doi.org/10.1007/s00113-021-01116-1

    Article  PubMed  Google Scholar 

  26. Cierny G 3rd, Mader JT, Penninck JJ (2003) A clinical staging system for adult osteomyelitis. Clin Orthop Relat Res. https://doi.org/10.1097/01.blo.0000088564.81746.62

    Article  PubMed  Google Scholar 

  27. Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: the diamond concept. Injury 38(Suppl 4):S3–S6. https://doi.org/10.1016/s0020-1383(08)70003-2

    Article  PubMed  Google Scholar 

  28. Miska M, Schmidmaier G (2020) Diamond concept for treatment of nonunions and bone defects. Unfallchirurg 123(9):679–686. https://doi.org/10.1007/s00113-020-00843-1

    Article  PubMed  Google Scholar 

  29. Moghaddam A, Zietzschmann S, Bruckner T, Schmidmaier G (2015) Treatment of atrophic tibia non-unions according to ‘diamond concept’: results of one- and two-step treatment. Injury 46(Suppl 4):S39–S50. https://doi.org/10.1016/s0020-1383(15)30017-6

    Article  PubMed  Google Scholar 

  30. Haubruck P, Tanner MC, Vlachopoulos W, Hagelskamp S, Miska M, Ober J, Fischer C, Schmidmaier G (2018) Comparison of the clinical effectiveness of Bone Morphogenic Protein (BMP) −2 and −7 in the adjunct treatment of lower limb nonunions. Orthop Traumatol Surg Res 104(8):1241–1248. https://doi.org/10.1016/j.otsr.2018.08.008

    Article  PubMed  Google Scholar 

  31. Otchwemah R, Moczko T, Marche B, Mattner F, Probst C, Tjardes T (2020) High prevalence of bacteria in clinically aseptic non-unions of the tibia and the femur in tissue biopsies. Eur J Trauma Emerg Surg 46(5):1093–1097. https://doi.org/10.1007/s00068-018-1010-z

    Article  PubMed  Google Scholar 

  32. Ateschrang A, Karavalakis G, Gonser C, Liener U, Freude T, Stöckle U, Walcher M, Zieker D (2013) Exchange reamed nailing compared to augmentation compression plating leaving the inserted nail in situ in the treatment of aseptic tibial non-union: a two-centre study. Wien Klin Wochenschr 125(9–10):244–253. https://doi.org/10.1007/s00508-013-0355-x

    Article  PubMed  Google Scholar 

  33. Dapunt U, Spranger O, Gantz S, Burckhardt I, Zimmermann S, Schmidmaier G, Moghaddam A (2015) Are atrophic long-bone nonunions associated with low-grade infections? Ther Clin Risk Manag 11:1843–1852. https://doi.org/10.2147/tcrm.S91532

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hackl S, Trenkwalder K, Militz M, Augat P, Stuby FM, von Rüden C (2022) Infizierte Pseudarthrose: diagnostischer und therapeutischer Ablauf. Unfallchirurgie. https://doi.org/10.1007/s00113-022-01204-w

    Article  Google Scholar 

  35. Marschall J, Bhavan KP, Olsen MA, Fraser VJ, Wright NM, Warren DK (2011) The impact of prebiopsy antibiotics on pathogen recovery in hematogenous vertebral osteomyelitis. Clin Infect Dis 52(7):867–872. https://doi.org/10.1093/cid/cir062

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kuehlfluck P, Moghaddam A, Helbig L, Child C, Wildemann B, Schmidmaier G, Group HT-HTR (2015) RIA fractions contain mesenchymal stroma cells with high osteogenic potency. Injury 46(Suppl 8):S23–S32. https://doi.org/10.1016/S0020-1383(15)30051-6

    Article  PubMed  Google Scholar 

  37. Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42(Suppl 2):S3–S15. https://doi.org/10.1016/j.injury.2011.06.015

    Article  PubMed  Google Scholar 

  38. Oliva F, Migliorini F, Cuozzo F, Torsiello E, Hildebrand F, Maffulli N (2021) Outcomes and complications of the reamer irrigator aspirator versus traditional iliac crest bone graft harvesting: a systematic review and meta-analysis. J Orthop Traumatol 22(1):50. https://doi.org/10.1186/s10195-021-00612-9

    Article  PubMed  PubMed Central  Google Scholar 

  39. van de Wall BJM, Beeres FJP, Rompen IF, Link BC, Babst R, Schoeneberg C, Michelitsch C, Nebelung S, Pape HC, Gueorguiev B, Knobe M (2022) RIA versus iliac crest bone graft harvesting: a meta-analysis and systematic review. Injury 53(2):286–293. https://doi.org/10.1016/j.injury.2021.10.002

    Article  PubMed  Google Scholar 

  40. Calori GM, Colombo M, Ripamonti C, Bucci M, Fadigati P, Mazza E, Mulas S, Tagliabue L (2011) Polytherapy in bone regeneration: clinical applications and preliminary considerations. Int J Immunopathol Pharmacol 24(1 Suppl 2):85–90. https://doi.org/10.1177/03946320110241s216

    Article  CAS  PubMed  Google Scholar 

  41. Blokhuis TJ, Calori GM, Schmidmaier G (2013) Autograft versus BMPs for the treatment of non-unions: what is the evidence? Injury 44(Suppl 1):S40–S42. https://doi.org/10.1016/s0020-1383(13)70009-3

    Article  PubMed  Google Scholar 

  42. Poon B, Kha T, Tran S, Dass CR (2016) Bone morphogenetic protein‑2 and bone therapy: successes and pitfalls. J Pharm Pharmacol 68(2):139–147. https://doi.org/10.1111/jphp.12506

    Article  CAS  PubMed  Google Scholar 

  43. Everding J, Roßlenbroich S, Raschke MJ (2018) Pseudarthrosen der langen Röhrenknochen. Chirurg 89(1):73–88. https://doi.org/10.1007/s00104-017-0547-4

    Article  CAS  PubMed  Google Scholar 

  44. Puts R, Vico R, Beilfuß N, Shaka M, Padilla F, Raum K (2021) Pulsed ultrasound for bone regeneration - outcomes and hurdles in the clinical application: a systematic review. Eur Cell Mater 42:281–311. https://doi.org/10.22203/eCM.v042a20

    Article  CAS  PubMed  Google Scholar 

  45. Wang FS, Yang KD, Kuo YR, Wang CJ, Sheen-Chen SM, Huang HC, Chen YJ (2003) Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of segmental defect. Bone 32(4):387–396. https://doi.org/10.1016/s8756-3282(03)00029-2

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk von Lübken.

Ethics declarations

Interessenkonflikt

M. Grunert, C. Hackenbroch und F. von Lübken geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Benedikt J. Braun, Tübingen

Tina Histing, Tübingen

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grunert, M., Hackenbroch, C. & von Lübken, F. Update 2022 Pseudarthrosen. Unfallchirurgie 125, 589–601 (2022). https://doi.org/10.1007/s00113-022-01201-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-022-01201-z

Schlüsselwörter

Keywords

Navigation