Skip to main content

Advertisement

Log in

3D-Druck in der Wirbelsäulenchirurgie – Update

3D printing in spinal surgery—Update

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Die Technik des 3D-Drucks bietet viel Potenzial in der Wirbelsäulenchirurgie. Diese neue Technologie fand bereits in unterschiedlichen Bereichen der spinalen Chirurgie Anwendung; hierzu zählen die präoperative Planung sowie die intraoperative Insertion und Herstellung von patientenspezifischen Implantaten. Zum Beispiel konnte gezeigt werden, dass die präoperative dreidimensionale Visualisierung spinaler Deformitäten in der Operationsplanung hilfreich ist und die Platzierung von Pedikelschrauben durch individuelle Templates präziser ist als in der Freihandtechnik. Das vorliegende Review fasst die aktuelle Literatur über den 3D-Druck in der Wirbelsäulenchirurgie systematisch unter Berücksichtigung des aktuellen Stands der Anwendungen, der Limitierungen und des Potenzials zusammen.

Abstract

The technique of 3D printing offers a high potential for further optimization of spinal surgery. This new technology has been published for different areas in the field of spinal surgery, e.g. in preoperative planning, intraoperative use as well as to create patient-specific implants. For example, it has been demonstrated that preoperative 3‑dimensional visualization of spinal deformities is helpful in planning procedures. Moreover, insertion of pedicle screws seems to be more accurate when using individualized templates to guide the drill compared to freehand techniques. This review summarizes the current literature dealing with 3D printing in spinal surgery with special consideration of the current applications, the limitations and the future potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Ahmed AK, Pennington Z, Molina CA et al (2019) Multidisciplinary surgical planning for en bloc resection of malignant primary cervical spine tumors involving 3D-printed models and neoadjuvant therapies: report of 2 cases. J Neurosurg Spine. https://doi.org/10.3171/2018.9.SPINE18607

    Article  PubMed  Google Scholar 

  2. Amelot A, Colman M, Loret JE (2018) Vertebral body replacement using patient-specific three-dimensional-printed polymer implants in cervical spondylotic myelopathy: an encouraging preliminary report. Spine J 18:892–899

    Article  PubMed  Google Scholar 

  3. Arbogast M, Haas JP (2020) Verletzungen bei Kindern und Jugendlichen mit entzündlich rheumatischen Erkrankungen. Unfallchirurg 123:607–615

    Article  CAS  PubMed  Google Scholar 

  4. Berry E, Cuppone M, Porada S et al (2005) Personalised image-based templates for intra-operative guidance. Proc Inst Mech Eng H 219:111–118

    Article  CAS  PubMed  Google Scholar 

  5. Burkhard M, Fürnstahl P, Farshad M (2019) Three-dimensionally printed vertebrae with different bone densities for surgical training. Eur Spine J 28:798–806

    Article  PubMed  Google Scholar 

  6. Choy WJ, Mobbs RJ, Wilcox B et al (2017) Reconstruction of thoracic spine using a personalized 3D-printed vertebral body in adolescent with T9 primary bone tumor. World Neurosurg 105:1032.e13–1032.e17

    Article  Google Scholar 

  7. Clifton W, Damon A, Valero-Moreno F et al (2020) The spinebox: a freely available, open-access, 3D-printed simulator design for lumbar pedicle screw placement. Cureus 12:e7738

    PubMed  PubMed Central  Google Scholar 

  8. Clifton W, Nottmeier E, Damon A et al (2019) The future of biomechanical spine research: conception and design of a dynamic 3D printed cervical myelography phantom. Cureus 11:e4591

    PubMed  PubMed Central  Google Scholar 

  9. D’urso PS, Askin G, Earwaker JS et al (1999) Spinal biomodeling. Spine (Phila Pa 1976) 24:1247–1251

    Article  Google Scholar 

  10. Decker S, Omar M, Krettek C et al (2014) Elective thoracotomy for pedicle screw removal to prevent severe aortic bleeding. World J Clin Cases 2:100–103

    Article  PubMed  PubMed Central  Google Scholar 

  11. Deng T, Jiang M, Lei Q et al (2016) The accuracy and the safety of individualized 3D printing screws insertion templates for cervical screw insertion. Comput Assist Surg (Abingdon) 21:143–149

    Article  Google Scholar 

  12. Dong J, Zhang S, Liu H et al (2014) Novel alternative therapy for spinal tuberculosis during surgery: reconstructing with anti-tuberculosis bioactivity implants. Expert Opin Drug Deliv 11:299–305

    Article  CAS  PubMed  Google Scholar 

  13. Garg B, Gupta M, Singh M et al (2019) Outcome and safety analysis of 3D-printed patient-specific pedicle screw jigs for complex spinal deformities: a comparative study. Spine J 19:56–64

    Article  PubMed  Google Scholar 

  14. Girolami M, Boriani S, Bandiera S et al (2018) Biomimetic 3D-printed custom-made prosthesis for anterior column reconstruction in the thoracolumbar spine: a tailored option following en bloc resection for spinal tumors : Preliminary results on a case-series of 13 patients. Eur Spine J 27:3073–3083

    Article  PubMed  Google Scholar 

  15. Izatt MT, Thorpe PL, Thompson RG et al (2007) The use of physical biomodelling in complex spinal surgery. Eur Spine J 16:1507–1518

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang L, Dong L, Tan M et al (2017) A modified personalized image-based drill guide template for atlantoaxial pedicle screw placement: a clinical study. Med Sci Monit 23:1325–1333

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kantelhardt SR, Martinez R, Baerwinkel S et al (2011) Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 20:860–868

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim D, Lim JY, Shim KW et al (2017) Sacral reconstruction with a 3D-printed implant after hemisacrectomy in a patient with sacral osteosarcoma: 1‑year follow-up result. Yonsei Med J 58:453–457

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim MP, Ta AH, Ellsworth WA et al (2015) Three dimensional model for surgical planning in resection of thoracic tumors. Int J Surg Case Rep 16:127–129

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li C, Yang M, Xie Y et al (2015) Application of the polystyrene model made by 3‑D printing rapid prototyping technology for operation planning in revision lumbar discectomy. J Orthop Sci 20:475–480

    Article  PubMed  CAS  Google Scholar 

  21. Lu S, Zhang YZ, Wang Z et al (2012) Accuracy and efficacy of thoracic pedicle screws in scoliosis with patient-specific drill template. Med Biol Eng Comput 50:751–758

    Article  PubMed  Google Scholar 

  22. Mao K, Wang Y, Xiao S et al (2010) Clinical application of computer-designed polystyrene models in complex severe spinal deformities: a pilot study. Eur Spine J 19:797–802

    Article  PubMed  PubMed Central  Google Scholar 

  23. Martelli N, Serrano C, van den Brink H et al (2016) Advantages and disadvantages of 3‑dimensional printing in surgery: a systematic review. Surgery 159:1485–1500

    Article  PubMed  Google Scholar 

  24. Merc M, Drstvensek I, Vogrin M et al (2013) A multi-level rapid prototyping drill guide template reduces the perforation risk of pedicle screw placement in the lumbar and sacral spine. Arch Orthop Trauma Surg 133:893–899

    Article  PubMed  Google Scholar 

  25. Merc M, Recnik G, Krajnc Z (2017) Lumbar and sacral pedicle screw placement using a template does not improve the midterm pain and disability outcome in comparison with free-hand method. Eur J Orthop Surg Traumatol 27:583–589

    Article  PubMed  Google Scholar 

  26. Mizutani J, Matsubara T, Fukuoka M et al (2008) Application of full-scale three-dimensional models in patients with rheumatoid cervical spine. Eur Spine J 17:644–649

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mobbs RJ, Choy WJ, Wilson P et al (2018) L5 en-bloc vertebrectomy with customized reconstructive implant: comparison of patient-specific versus off-the-shelf implant. World Neurosurg 112:94–100

    Article  PubMed  Google Scholar 

  28. Nasser R, Yadla S, Maltenfort MG et al (2010) Complications in spine surgery: a review. J Neurosurg Spine 13:144–157

    Article  PubMed  Google Scholar 

  29. Otsuki B, Takemoto M, Fujibayashi S et al (2016) Utility of a custom screw insertion guide and a full-scale, color-coded 3D plaster model for guiding safe surgical exposure and screw insertion during spine revision surgery. J Neurosurg Spine 25:94–102

    Article  PubMed  Google Scholar 

  30. Pijpker PAJ, Kuijlen JMA, Kraeima J et al (2018) Three-dimensional planning and use of individualized osteotomy-guiding templates for surgical correction of kyphoscoliosis: a technical case report. World Neurosurg 119:113–117

    Article  PubMed  Google Scholar 

  31. Richter M, Cakir B, Schmidt R (2005) Cervical pedicle screws: conventional versus computer-assisted placement of cannulated screws. Spine (Phila Pa 1976) 30:2280–2287

    Article  Google Scholar 

  32. Rong X, Wang B, Chen H et al (2016) Use of rapid prototyping drill template for the expansive open door laminoplasty: a cadaveric study. Clin Neurol Neurosurg 150:13–17

    Article  PubMed  Google Scholar 

  33. Siu TL, Rogers JM, Lin K et al (2018) Custom-made titanium 3‑dimensional printed Interbody cages for treatment of osteoporotic fracture-related spinal deformity. World Neurosurg 111:1–5

    Article  PubMed  Google Scholar 

  34. Spetzger U, Frasca M, König SA (2016) Surgical planning, manufacturing and implantation of an individualized cervical fusion titanium cage using patient-specific data. Eur Spine J 25:2239–2246

    Article  PubMed  Google Scholar 

  35. Sugawara T, Kaneyama S, Higashiyama N et al (2018) Prospective multicenter study of a multistep screw insertion technique using patient-specific screw guide templates for the cervical and thoracic spine. Spine (Phila Pa 1976) 43:1685–1694

    Article  Google Scholar 

  36. Swartman B, Franke J, Schnurr C et al (2020) Digitaler OP. Unfallchirurg 123:849–855

    Article  CAS  PubMed  Google Scholar 

  37. Tack P, Victor J, Gemmel P et al (2016) 3D-printing techniques in a medical setting: a systematic literature review. BioMed Eng OnLine 15:115

    Article  PubMed  PubMed Central  Google Scholar 

  38. Thayaparan GK, Owbridge MG, Linden M et al (2020) Measuring the performance of patient-specific solutions for minimally invasive transforaminal lumbar interbody fusion surgery. J Clin Neurosci 71:43–50

    Article  PubMed  Google Scholar 

  39. Vaishya R, Vijay V, Vaish A et al (2018) Three-dimensional printing for complex orthopedic cases and trauma: a blessing. Apollo Med 15:51–54

    Google Scholar 

  40. Wei F, Li Z, Liu Z et al (2020) Upper cervical spine reconstruction using customized 3D-printed vertebral body in 9 patients with primary tumors involving C2. Ann Transl Med 8:332–332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wei R, Guo W, Ji T et al (2017) One-step reconstruction with a 3D-printed, custom-made prosthesis after total en bloc sacrectomy: a technical note. Eur Spine J 26:1902–1909

    Article  PubMed  Google Scholar 

  42. Wei R, Guo W, Yang R et al (2019) Reconstruction of the pelvic ring after total en bloc sacrectomy using a 3D-printed sacral endoprosthesis with re-establishment of spinopelvic stability: a retrospective comparative study. Bone Joint J 101:880–888

    Article  PubMed  Google Scholar 

  43. Weiss MY, Melnyk R, Mix D et al (2019) Design and validation of a cervical laminectomy simulator using 3D printing and hydrogel phantoms. Oper Neurosurg 18:202–208

    Article  Google Scholar 

  44. Xiao JR, Huang WD, Yang XH et al (2016) En bloc resection of primary malignant bone tumor in the cervical spine based on 3‑dimensional printing technology. Orthop Surg 8:171–178

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yang M, Li C, Li Y et al (2015) Application of 3D rapid prototyping technology in posterior corrective surgery for Lenke 1 adolescent idiopathic scoliosis patients. Medicine 94:e582

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Decker.

Ethics declarations

Interessenkonflikt

S. Roth, S. Sehmisch und S. Decker geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Christian Krettek, Hannover

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, S., Sehmisch, S. & Decker, S. 3D-Druck in der Wirbelsäulenchirurgie – Update. Unfallchirurg 125, 351–360 (2022). https://doi.org/10.1007/s00113-022-01150-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-022-01150-7

Schlüsselwörter

Keywords

Navigation