Skip to main content
Log in

Mechanobiologie der Frakturheilung Teil 2

Bedeutung für die Osteosynthese

Mechanobiology of fracture healing part 2

Relevance for internal fixation of fractures

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Klinische Studien erlauben keine quantitative Korrelation zwischen der Beschreibung der Osteosynthesestabilität und dem Erfolg der Knochenheilung. Damit ist keine gezielte biomechanische Verbesserung der Osteosynthesetechnik möglich. Die geeignetste Größe, um die Stabilität der Osteosynthese quantitativ zu beschreiben, ist die Steifigkeit der Frakturfixation. Diese wurde für verschiedene Osteosyntheseverfahren in vitro biomechanisch und in wenigen Studien in vivo am Patienten bestimmt. Mithilfe numerischer Knochenheilungsprogramme ist es erstmals möglich, die in der Grundlagenforschung gefundenen Regeln zur Gewebedifferenzierung (Knochenheilung) zu nutzen, um günstige Osteosynthesesteifigkeiten zu berechnen. Am Beispiel der Tibiafraktur mit einer Marknagelstabilisierung konnten die Möglichkeiten der numerischen Simulation der Frakturheilung gezeigt werden. Solche Programme erlauben die Simulation des Einflusses verschiedener Osteosynthesefaktoren wie Marknageldurchmesser, Frakturform, Frakturspaltbreite und Nagelmaterial. Um aufwendige Berechnungen für verschiedene Osteosynthesen zu vermeiden, wurde ein Kennfeld berechnet, das die zu erwartende Knochenheilungsqualität in Abhängigkeit von der axialen Steifigkeit und der Schersteifigkeit der Osteosynthese darstellt. Vergleicht man die aus der Literatur bekannten Steifigkeiten der wichtigsten Osteosyntheseverfahren mit diesem Kennfeld, wird deutlich, dass die Verfahren meistens eine sehr geringe Scher- und/oder Torsionssteifigkeit aufweisen und damit die Heilung verzögern können. Bei der Plattenosteosynthese dagegen gibt es neben geeigneten und zu geringen Steifigkeiten auch Situationen, wo hohe axiale Steifigkeiten direkt unterhalb der Platte nur kleinste Gewebedehnungen erlauben, die einen zu geringen Reiz für die Knochenneubildung setzen und dadurch eine Verzögerung der Knochenheilung verursachen können.

Abstract

Clinical studies do not allow a quantitative correlation between stability of fracture fixation and outcome of bone healing. This limits the biomechanical improvement of fracture fixation techniques. The most practical quantitative parameter to describe the stability of a fracture fixation is the stiffness. This can be determined for several types of fixation through biomechanical methods and in some clinical studies in vivo. By using numerical fracture healing models, it is now possible to use the tissue differentiation rules found in basic research to calculate optimal stiffness parameters for various fixation techniques. For a tibial fracture as an example the possibilities of a numerical fracture healing simulation have been demonstrated. The effects of the diameter of an intramedullary nail, type of fracture, fracture gap size and nail material on healing could be demonstrated. To circumvent complex and time consuming calculations for several fixations a map was calculated which shows the expected bone healing quality as a function of the axial stiffness and the shear stiffness of the fixation device. By comparing the stiffness of various fixation techniques with the stiffness map it becomes evident that the methods most often used (e.g. unreamed nail, plate and external fixator) have a low shear and/or rotational stiffness that is too low to achieve the optimal healing outcome. The high axial stiffness of plates next to the plate surface can lead to very low tissue strain directly adjacent to the plate and can delay the bone healing process at this location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Ahmad M, Nanda R, Bajwa AS et al (2007) Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability? Injury 38:358–364

    Article  CAS  PubMed  Google Scholar 

  2. Augat P, Penzkofer R, Nolte A et al (2008) Interfragmentary movement in diaphyseal tibia fractures fixed with locked intramedullary nails. J Orthop Trauma 22:30–36

    Article  PubMed  Google Scholar 

  3. Bhandari M, Guyatt G, Tornetta P 3rd et al (2008) Randomized trial of reamed and unreamed intramedullary nailing of tibial shaft fractures. Study to prospectively evaluate reamed Intramedullary nails in patients with tibial fractures. J Bone Joint Surg Am 90:2567–2578

    Article  PubMed  Google Scholar 

  4. Bhandari M, Tornetta P 3rd, Sprague S et al (2003) Predictors of reoperation following operative management of fractures of the tibial shaft. J Orthop Trauma 17:353–361

    Article  PubMed  Google Scholar 

  5. Blachut PA, O’brien PJ, Meek RN et al (1997) Interlocking intramedullary nailing without reaming for the treatment of closed fractures of the tibial shaft. A prospective randomized study. J Bone Joint Surg Am 79:640–646

    Article  CAS  PubMed  Google Scholar 

  6. Bottlang M, Doornink J, Lujan TJ et al (2010) Effects of construct stiffness on healing of fractures stabilized with locking plates. J Bone Joint Surg Am 92(Suppl 2):12–22

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bottlang M, Lesser M, Koerber J et al (2010) Far cortical locking can improve healing of fractures stabilized with locking plates. J Bone Joint Surg Am 92:1652–1660

    Article  PubMed  PubMed Central  Google Scholar 

  8. Claes L (2006) Biologie und Biomechanik der Osteosynthese und Frakturheilung. Orthop Unfallchir Up2date 1:329–346

    Article  Google Scholar 

  9. Claes L (2011) Biomechanical principles and mechanobiologic aspects of flexible and locked plating. J Orthop Trauma 25(Suppl 1):S4–S7

    Article  PubMed  Google Scholar 

  10. Claes L (1991) Die Messung der Knochenheilung bei Fixateur-externe-Osteosynthesen mit dem Fraktometer FM 100 (Measuring bone healing in osteosynthesis with external fixator using the Fraktometer FM 100). Chirurg 62:354–355

    CAS  PubMed  Google Scholar 

  11. Claes L, Augat P, Suger G et al (1997) Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res 15:577–584

    Article  CAS  PubMed  Google Scholar 

  12. Claes L, Grass R, Schmickal T et al (2002) Monitoring and healing analysis of 100 tibial shaft fractures. Langenbecks Arch Surg 387:146–152

    Article  CAS  PubMed  Google Scholar 

  13. Claes LE, Heigele CA (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32:255–266

    Article  CAS  PubMed  Google Scholar 

  14. Court-Brown CM, Will E, Christie J et al (1996) Reamed or unreamed nailing for closed tibial fractures. A prospective study in Tscherne C1 fractures. J Bone Jt Surg 78:580–583

    CAS  Google Scholar 

  15. Cunningham JL, Evans M, Kenwright J (1989) Measurement of fracture movement in patients treated with unilateral external skeletal fixation. J Biomed Eng 11:118–122

    Article  CAS  PubMed  Google Scholar 

  16. Drosos GI, Bishay M, Karnezis IA et al (2006) Factors affecting fracture healing after intramedullary nailing of the tibial diaphysis for closed and grade I open fractures. J Bone Joint Surg Br 88:227–231

    Article  CAS  PubMed  Google Scholar 

  17. Duda GN, Kirchner H, Wilke HJ et al (1998) A method to determine the 3‑D stiffness of fracture fixation devices and its application to predict inter-fragmentary movement. J Biomech 31:247–252

    Article  CAS  PubMed  Google Scholar 

  18. Epari DR, Kassi JP, Schell H et al (2007) Timely fracture-healing requires optimization of axial fixation stability. J Bone Joint Surg Am 89:1575–1585

    PubMed  Google Scholar 

  19. Gaebler C, Berger U, Schandelmaier P et al (2001) Rates and odds ratios for complications in closed and open tibial fractures treated with unreamed, small diameter tibial nails: a multicenter analysis of 467 cases. J Orthop Trauma 15:415–423

    Article  CAS  PubMed  Google Scholar 

  20. Gardner TN, Evans M, Hardy J et al (1997) Dynamic interfragmentary motion in fractures during routine patient activity. Clin Orthop 336:216–225

    Article  Google Scholar 

  21. Gasser B, Boman B, Wyder D et al (1990) Stiffness characteristics of the circular Ilizarov device as opposed to conventional external fixators. J Biomech Eng 112:15–21

    Article  CAS  PubMed  Google Scholar 

  22. Hoegel FW, Hoffmann S, Weninger P et al (2012) Biomechanical comparison of locked plate osteosynthesis, reamed and unreamed nailing in conventional interlocking technique, and unreamed angle stable nailing in distal tibia fractures. J Trauma Acute Care Surg 73:933–938

    Article  PubMed  Google Scholar 

  23. Höntzsch D, Weller S, Dürselen L et al (1993) Die begleitende Fibulaosteosynthese bei der kompletten Unterschenkelfraktur. Traumatol aktuell 9:1–110

  24. Horn J, Linke B, Hontzsch D et al (2009) Angle stable interlocking screws improve construct stability of intramedullary nailing of distal tibia fractures: a biomechanical study. Injury 40:767–771

    Article  CAS  PubMed  Google Scholar 

  25. Isaksson H, Wilson W, Van Donkelaar CC et al (2006) Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J Biomech 39:1507–1516

    Article  PubMed  Google Scholar 

  26. Kaspar K, Schell H, Seebeck P et al (2005) Angle stable locking reduces interfragmentary movements and promotes healing after unreamed nailing. Study of a displaced osteotomy model in sheep tibiae. J Bone Joint Surg Am 87:2028–2037

    CAS  PubMed  Google Scholar 

  27. Kenwright J, Richardson JB, Cunningham JL et al (1991) Axial movement and tibial fractures. A controlled randomised trial of treatment. J Bone Joint Surg Br 73:654–659

    CAS  PubMed  Google Scholar 

  28. Lacroix D, Prendergast PJ (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35:1163–1171

    Article  CAS  PubMed  Google Scholar 

  29. Larsen LB, Madsen JE, Hoiness PR et al (2004) Should insertion of intramedullary nails for tibial fractures be with or without reaming? A prospective, randomized study with 3.8 years’ follow-up. J Orthop Trauma 18:144–149

    Article  PubMed  Google Scholar 

  30. Lujan TJ, Henderson CE, Madey SM et al (2010) Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation. J Orthop Trauma 24:156–162

    Article  PubMed  Google Scholar 

  31. McKibbin B (1978) The biology of fracture healing in long bones. J Bone Joint Surg Br 60-B:150–162

    CAS  PubMed  Google Scholar 

  32. Müller J, Schenk R, Willenegger H (1968) Experimentelle Untersuchungen über die Entstehung reaktiver Pseudarthrosen am Hunderadius. Helv Chir Acta 35:301–308

    PubMed  Google Scholar 

  33. Penzkofer R, Maier M, Nolte A et al (2009) Influence of intramedullary nail diameter and locking mode on the stability of tibial shaft fracture fixation. Arch Orthop Trauma Surg 129:525–531

    Article  PubMed  Google Scholar 

  34. Perren SM (2002) Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg 84:1093–1110

    Article  Google Scholar 

  35. Perren SM, Cordey J (1977) Tissue differences in fracture healing. Unfallheilkunde 80:161–164

    CAS  PubMed  Google Scholar 

  36. Röderer G, Gebhard F, Duerselen L et al (2014) Delayed bone healing following high tibial osteotomy related to increased implant stiffness in locked plating. Injury 45:1648–1652

    Article  PubMed  Google Scholar 

  37. Schandelmaier P, Krettek C, Tscherne H (1996) Biomechanical study of nine different tibia locking nails. J Orthop Trauma 10:37–44

    Article  CAS  PubMed  Google Scholar 

  38. Schenk RK (1978) Die Histologie der primären Knochenheilung im Lichte neuer Konzeptionen über den Knochenumbau. Unfallheilkunde 81:219–227

    CAS  PubMed  Google Scholar 

  39. Schneider E, Sasse S, Schmidt HG et al (1992) Biomechanics of the ring fixator – contributions of individual structural elements. Unfallchirurg 95:580–587

    CAS  PubMed  Google Scholar 

  40. Schweiberer L, Baumgart R, Deiler S (1999) The biological reaction in atrophic and hypertrophic pseudarthrosis of diaphysis of long bone. Causes and forms of appearance. Chirurg 70:1193–1201

    Article  CAS  PubMed  Google Scholar 

  41. Seide K, Weinrich N, Wenzl ME et al (2004) Three-dimensional load measurements in an external fixator. J Biomech 37:1361–1369

    Article  CAS  PubMed  Google Scholar 

  42. Shefelbine SJ, Augat P, Claes L et al (2005) Intact fibula improves fracture healing in a rat tibia osteotomy model. J Orthop Res 23:489–493

    Article  PubMed  Google Scholar 

  43. Simon U, Augat P, Utz M et al (2011) A numerical model of the fracture healing process that describes tissue development and revascularisation. Comput Methods Biomech Biomed Engin 41:79–93

    Article  Google Scholar 

  44. Steiner M, Claes L, Ignatius A et al (2013) Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli. J R Soc Interface 10:20130389

    Article  PubMed  PubMed Central  Google Scholar 

  45. Steiner M, Claes L, Ignatius A et al (2014) Disadvantages of interfragmentary shear on fracture healing-mechanical insights through numerical simulation. J Orthop Res 32:865–872

    Article  PubMed  Google Scholar 

  46. Steiner M, Claes L, Ignatius A et al (2014) Numerical simulation of callus healing for optimization of fracture fixation stiffness. PLOS ONE 9:e101370

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stoffel K, Dieter U, Stachowiak G et al (2003) Biomechanical testing of the LCP –how can stability in locked internal fixators be controlled? Injury 34(Suppl 2):B11–19

    Article  PubMed  Google Scholar 

  48. Wehner T, Claes L, Ignatius A et al (2012) Optimization of intramedullary nailing by numerical simulation of fracture healing. J Orthop Res 30:569–573

    Article  PubMed  Google Scholar 

  49. Wissing H, Stürmer KM, Breidenstein G (1990) Die Wertigkeit verschiedener Versuchstierspecies für experimentelle Untersuchungen am Knochen. Unfallheilkunde 212:479–488

    Google Scholar 

Download references

Danksagung

Mein Dank gilt allen ehemaligen Mitarbeitern, die aktiv an der mechanobiologischen Forschung zur Frakturheilung beteiligt waren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Claes.

Ethics declarations

Interessenkonflikt

L. Claes gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

L. Claes, Ulm

W. Mutschler, München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claes, L. Mechanobiologie der Frakturheilung Teil 2. Unfallchirurg 120, 23–31 (2017). https://doi.org/10.1007/s00113-016-0281-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-016-0281-2

Schlüsselwörter

Keywords

Navigation