Skip to main content

Advertisement

Log in

Knochenersatz

Transplantate und Ersatzmaterialien – ein Update

Bone substitute

Transplants and replacement materials – an update

  • Medizin aktuell/Technische Innovationen
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Autologer Knochen ist aufgrund seiner speziellen Eigenschaften als Knochentransplantat zur Defektauffüllung unumstritten. Neben allogenen Knochentransplantaten als Alternative haben sich eine Reihe von Knochenersatzmaterialien etabliert, so dass der Überblick angesichts der Fülle der auf dem Markt befindlichen Knochenersatzmaterialien beinahe verloren geht. Der vorliegende Beitrag soll eine Übersicht über die kommerziell erhältlichen Materialien geben. Unterschiedliche Klassifikationssysteme hinsichtlich Herkunft, Vitalität, biologischer Wertigkeit und ihrer chemischen Zusammensetzung werden vorgestellt sowie einzelne Materialien inklusive ihrer Vor- und Nachteile dargestellt. Abschließend soll eine Beschreibung von „tissue engineering“ und der Gentherapie einen Ausblick in die Zukunft geben.

Abstract

Due to the special characteristics, autologous bone for bone grafting remains the gold standard for defect filling. Besides allogenic bone transplants, as an alternative a set of bone substitutes has been established. An overview of the bone substitutes presently on the market is almost lost due to the abundance of products. The present paper gives a review of the materials available on the market. Different classification systems regarding origin, vitality, biological priority and chemical composition are described as well as the individual materials including the advantages and disadvantages. Finally, a description of tissue engineering and gene therapy gives a view of future prospective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. Athanasiou KA, Zhu C, Lanctot DR et al (2000) Fundamentals of biomechanics in tissue engineering of bone. Tissue Eng 6(4):361–381

    Article  PubMed  CAS  Google Scholar 

  2. Axelrad TW, Einhorn TA (2009) Bone morphogenetic proteins in orthopaedic surgery. Cytokine Growth Factor Rev 20(5–6):481–488

    Google Scholar 

  3. Bauer TW (2007) Bone graft substitutes. Skeletal Radiol 36(12):1105–1107

    Article  PubMed  CAS  Google Scholar 

  4. Belthur MV, Conway JD, Jindal G et al (2008) Bone graft harvest using a new intramedullary system. Clin Orthop Relat Res 466(12):2973–2980

    Article  PubMed  Google Scholar 

  5. Bernstein P, Bornhäuser M, Günther KP et al (2009) Knochen-Tissue-Engineering in der klinischen Anwendung. Eine Standortbestimmung. Orthopade 38(11):1029–1037

    Article  PubMed  CAS  Google Scholar 

  6. Best SM, Porter AE, Thian ES et al (2008) Bioceramics: past, present and for the future. J Eur Ceram Soc 28(7):1319–1327

    Article  CAS  Google Scholar 

  7. Betz OB, Betz VM, Abdulazim A et al (2010) The repair of critical-sized bone defects using expedited, autologous BMP-2 gene-activated fat implants. Tissue Eng Part A 16(3):1093–1101

    Article  PubMed  CAS  Google Scholar 

  8. Betz VM, Betz OB, Glatt V et al (2007) Healing of segmental bone defects by direct percutaneous gene delivery: effect of vector dose. Hum Gene Ther 18(10):907–915

    Article  PubMed  CAS  Google Scholar 

  9. Biewener A, Meyer J, Rentsch C et al (2007) Stabilisierung von meta- und diaphysären Segmentdefekten nach Tumorresektion durch Marknagelung und Polymethylmetacrylat- (PMMA-) Formkörper. Orthopade 36(2):152–158, 160–163

    Article  PubMed  CAS  Google Scholar 

  10. Bishop GB, Einhorn TA (2007) Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery. Int Orthop 31(6):721–727

    Article  PubMed  Google Scholar 

  11. Bøe BG, Röhrl SM, Heier T et al (2011) A prospective randomized study comparing electrochemically deposited hydroxyapatite and plasma-sprayed hydroxyapatite on titanium stems. Acta Orthop 82(1):13–19

    Article  PubMed  Google Scholar 

  12. Bohner M, Gbureck U, Barralet JE (2005) Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials 26(33):6423–6429

    Article  PubMed  CAS  Google Scholar 

  13. Bohner M (2010) Design of ceramic-based cements and putties for bone graft substitution. Eur Cell Mater 20:1–12

    PubMed  CAS  Google Scholar 

  14. Brenner P, Zwipp H, Rammelt S (2000) Vascularized double barrel ribs combined with free serratus anterior muscle transfer for homologous restoration of the hindfoot after calcanectomy. J Trauma 49(2):331–335

    Article  PubMed  CAS  Google Scholar 

  15. Breusch SJ, Kühn KD (2003) Knochenzemente auf Basis von Polymethylmethacrylat. Orthopade 32(1):41–50

    Article  PubMed  CAS  Google Scholar 

  16. Bula P, Lein T, Strassberger C et al (2010) Ballonkyphoplastie zur Behandlung osteoporotischer Wirbelfrakturen: Indikationen-Behandlungsstrategie-Komplikationen. Z Orthop Unfall 148(6):646–656

    Article  PubMed  CAS  Google Scholar 

  17. Calori GM, Donati D, Di Bella C et al (2009) Bone morphogenetic proteins and tissue engineering: future directions. Injury 40(Suppl 3):67–76

    Article  Google Scholar 

  18. Chan CK, Kumar TS, Liao S et al (2006) Biomimetic nanocomposites for bone graft applications. Nanomedicine (Lond) 1(2):177–188

    Google Scholar 

  19. Chitsazi MT, Shirmohammadi A, Faramarzie M et al (2011) A clinical comparison of nano-crystalline hydroxyapatite (Ostim) and autogenous bone graft in the treatment of periodontal intrabony defects. Med Oral Patol Oral Cir Bucal 16(3):448–453

    Article  Google Scholar 

  20. Cox G, Jones E, McGonagle D et al (2011) Reamer-irrigator-aspirator indications and clinical results: a systematic review. Int Orthop 35(7):951–956

    Article  PubMed  Google Scholar 

  21. De Long WG Jr, Einhorn TA, Koval K et al. (2007) Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am 89(3):649–658

    Article  Google Scholar 

  22. Donly KJ (2011) Conservative glass ionomer cement occlusal restorations can be as effective as conventional amalgam occlusal restorations. J Evid Based Dent Pract 11(1):52–53

    Article  PubMed  Google Scholar 

  23. Eisenschenk A, Lautenbach M, Rohlmann A (1998) Freie, vaskularisierte Knochentransplantation im Bereich der Extremitäten. Orthopade 27(7):491–500

    PubMed  CAS  Google Scholar 

  24. Elshahat A, Shermak MA, Inoue N et al (2004) The use of Novabone and Norian in cranioplasty: a comparative study. J Craniofac Surg 15(3):483–489

    Article  PubMed  Google Scholar 

  25. Eward WC, Kontogeorgakos V, Levin LS, Brigman BE (2010) Free vascularized fibular graft reconstruction of large skeletal defects after tumor resection. Clin Orthop Relat Res 468(2):590–598

    Article  PubMed  Google Scholar 

  26. Finkemeier CG (2005) Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 84(3):454–464

    Google Scholar 

  27. Fleming JE Jr, Cornell CN, Muschler GF (2000) Bone cells and matrices in orthopedic tissue engineering. Orthop Clin North Am 31(3):357–374

    Article  PubMed  Google Scholar 

  28. Friedrich JB, Moran SL, Bishop AT, Shin AY (2009) Free vascularized fibula grafts for salvage of failed oncologic long bone reconstruction and pathologic fractures. Microsurgery 29(5):385–392

    Article  PubMed  Google Scholar 

  29. Garrel TV, Gotzen L (1998) Allogene Knochentransplantation und Knochenbanking. Unfallchirurg 101:713–727

    Article  Google Scholar 

  30. Gerber T, Knoblich T, Traykova G (2001) Entwicklung, in vitro und in vivo Tests eines hochporösen Knochenersatzmaterials. Osteologie 10:175–183

    Google Scholar 

  31. Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36(Suppl 3):20–27

    Article  Google Scholar 

  32. Giannoudis PV, Faour O, Goff T et al (2011) Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury 42(6):591–598

    Article  PubMed  Google Scholar 

  33. Götz W, Lenz S, Reichert C et al (2010) A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig. Folia Histochem Cytobiol 48(4):589–596

    Article  PubMed  Google Scholar 

  34. Heikkilä JT, Kukkonen J, Aho AJ et al (2011) Bioactive glass granules: a suitable bone substitute material in the operative treatment of depressed lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study. J Mater Sci Mater Med 22(4):1073–1080

    Article  PubMed  Google Scholar 

  35. Hierner R, Täger G, Nast-Kolb D (2009) Die vaskularisierte Knochentransplantation. Unfallchirurg 112(4):405–416

    Article  PubMed  CAS  Google Scholar 

  36. Hing KA (2004) Bone repair in the twenty-first century: biology, chemistry or engineering? Philos Transact A Math Phys Eng Sci 362(1825):2821–2850

    Article  PubMed  CAS  Google Scholar 

  37. Hollister SJ (2009) Scaffold design and manufacturing: from concept to clinic. Adv Mater 21(32–33):3330–3342

    Google Scholar 

  38. Hou HY, Wu K, Wang CT et al (2011) Treatment of unicameral bone cyst: surgical technique. J Bone Joint Surg Am 93(Suppl 1):92–99

    Article  PubMed  Google Scholar 

  39. Husby OS, Haugan K, Benum P et al (2010) A prospective randomised radiostereometric analysis trial of SmartSet HV and Palacos R bone cements in primary total hip arthroplasty. J Orthop Traumatol 11(1):29–35

    Article  PubMed  Google Scholar 

  40. Hutmacher DW, Schantz JT, Lam CX et al (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1(4):245–260

    Article  PubMed  CAS  Google Scholar 

  41. Kaveh K, Ibrahim R, Abu Bakar MZ et al (2010) Bone grafting and bone graft substitutes. J Anim Vet Adv 9(6):1055–1067

    Article  CAS  Google Scholar 

  42. Khan Y, Yaszemski MJ, Mikos AG et al (2008) Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am 90(Suppl 1):36–42

    Article  PubMed  Google Scholar 

  43. Killian CM, Croll TP (2010) Nano-ionomer tooth repair in pediatric dentistry. Pediatr Dent 32(7):530–535

    PubMed  Google Scholar 

  44. Kokubo T (1992) Bioactivity of glasses and glass-ceramics. In: Ducheyne P, Kokubo T, Blitterswijk CA van (eds) Bone-bonding biomaterials. Reed Healthcare Communications, Leiderdorp, pp 31–46

  45. Kübler NR (1997) Osteoinduktion und -reparation. Mund Kiefer Gesichtschir 1:2–25

    Article  PubMed  Google Scholar 

  46. Laurencin CT, El-Amin SF (2008) Xenotransplantation in orthopaedic surgery. J Am Acad Orthop Surg 16(1):4–8

    PubMed  Google Scholar 

  47. Lee SH, Kim ES, Eoh W (2011) Cement augmented anterior reconstruction with short posterior instrumentation: a less invasive surgical option for Kummell’s disease with cord compression. J Clin Neurosci 18(4):509–514

    Article  PubMed  Google Scholar 

  48. Li Z, Modlich U, Baum C (2004) Safety and efficacy in retroviraly modified haematopoetic cell therapy. Best Pract Res Clin Haemat 17(3):493–503

    Article  CAS  Google Scholar 

  49. Lieberman JR, Ghivizzani SC, Evans CH (2002) Gene transfer approaches to the healing of bone and cartilage. Mol Ther 6(2):141–147

    Article  PubMed  CAS  Google Scholar 

  50. Linhart W, Briem D, Peters A et al (2004) Resorbierbare Kalziumphosphatzemente. Trauma Berufskrankh 4:277–284

    Article  Google Scholar 

  51. Mahato NK (2010) Characterization of cortico-cancellous bone along the iliac crest: focus on graft harvesting. Surg Radiol Anat 33(5):433–437

    Article  PubMed  Google Scholar 

  52. Maher SA, Hidaka C, Cunningham ME et al (2006) What’s new in orthopaedic research. J Bone Joint Surg Am 88(10):2314–2321

    Article  PubMed  Google Scholar 

  53. Marcacci M, Kon E, Moukhachev V et al (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(5):947–955

    Article  PubMed  CAS  Google Scholar 

  54. Mehbod A, Aunoble S, Le Huec JC (2003) Vertebroplasty for osteoporotic spine fracture: prevention and treatment. Eur Spine J 12(Suppl 2):155–162

    Article  Google Scholar 

  55. Oberholzer A, Stahel P, Tschöke SK et al (2006) Stellenwert der Gentherapie in Unfallchirurgie und Orthopädie. Unfallchirurg 109(7):521–527

    Article  PubMed  CAS  Google Scholar 

  56. Ohsawa K, Neo M, Okamoto T et al (2004) In vivo absorption of porous apatite- and wollastonite-containing glass-ceramic. J Mater Sci Mater Med 15(8):859–864

    Article  PubMed  CAS  Google Scholar 

  57. Pape HC, Evans A, Kobbe P (2010) Autologous bone graft: properties and techniques. J Orthop Trauma 24(Suppl 1):36–40

    Article  Google Scholar 

  58. Pitzen T, Kränzlein K, Steudel WI et al (2004) Postoperative Beschwerden und Befunde im Bereich der Spanentnahmestelle am Becken bei ventraler zervikaler Fusion. Zentralbl Neurochir 65(1):7–12

    Article  PubMed  CAS  Google Scholar 

  59. Perry CR (1999) Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res (360):71–86

    Article  Google Scholar 

  60. Rentsch B, Hofmann A, Breier A et al (2009) Embroidered and surface modified polycaprolactone-co-lactide scaffolds as bone substitute: in vitro characterization. Ann Biomed Eng 37(10):2118–2128

    Article  PubMed  Google Scholar 

  61. Rentsch C, Rentsch B, Breier A et al (2010) Long-bone critical-size defects treated with tissue-engineered polycaprolactone-co-lactide scaffolds: a pilot study on rats. J Biomed Mater Res A 95(3):964–972

    PubMed  Google Scholar 

  62. Rueger JM, Hägele J, Lehmann W et al (2010) Knochenaufbau – Knochenersatzmaterialien. Orthopadie Unfallchirurgie 5:295–314

    Article  Google Scholar 

  63. Ruga E, Gallesio C, Chiusa L et al (2011) Clinical and histologic outcomes of calcium sulfate in the treatment of postextraction sockets. J Craniofac Surg 22(2):494–498

    Article  PubMed  Google Scholar 

  64. Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4(8):743–765

    Article  PubMed  CAS  Google Scholar 

  65. Schieker M, Heiss C, Mutschler W (2008) Knochenersatzmaterialien. Unfallchirurg 111(8):613–619

    Article  PubMed  CAS  Google Scholar 

  66. Schieker M, Mutschler W (2006) Die Überbrückung von posttraumatischen Knochendefekten. Bewährtes und Neues. Unfallchirurg 109(9):715–732

    Article  PubMed  CAS  Google Scholar 

  67. Schildhauer TA, Gekle CJ, Muhr G (1999) Neue Biomaterialien am Skelettsystem. Chirurg 70(8):888–896

    Article  PubMed  CAS  Google Scholar 

  68. Schmidmaier G, Herrmann S, Green J et al (2006) Quantitative assessment of growth factors in reaming aspirate, iliac crest, and platelet preparation. Bone 39(5):1156–1163

    Article  PubMed  CAS  Google Scholar 

  69. Schmidt-Rohlfing B, Tzioupis C, Menzel CL et al (2009) Tissue Engineering von Knochengewebe. Prinzipien und klinische Anwendungsmöglichkeiten. Unfallchirurg 112(9):785–794

    Article  PubMed  CAS  Google Scholar 

  70. Schneiders W, Reinstorf A, Ruhnow M et al (2008) Effect of chondroitin sulphate on material properties and bone remodelling around hydroxyapatite/collagen composites. J Biomed Mater Res A 85(3):638–645

    PubMed  Google Scholar 

  71. Schneiders W, Reinstorf A, Biewener A et al (2009) In vivo effects of modification of hydroxyapatite/collagen composites with and without chondroitin sulphate on bone remodeling in the sheep tibia. J Orthop Res 27(1):15–21

    Article  PubMed  CAS  Google Scholar 

  72. Schnürer SM, Gopp U, Kühn KD et al (2003) Knochenersatzwerkstoffe. Orthopade 32(1):2–10

    Article  PubMed  Google Scholar 

  73. Smeets R, Kolk A (2010) Osteokonduktive und – inductive Knochenersatzmaterialien. ZMK 27(6):328–340

    Google Scholar 

  74. Soldner E, Herr G (2001) Knochen, Knochentransplantate und Knochenersatzmaterialien. Grundlagen, aktueller Stand und neue Entwicklungen. Trauma Berufskrankh 3(4):256–269

    Article  Google Scholar 

  75. Thorwarth WM, Schlegel KA, Srour S (2004) Untersuchung zur knöchernen Regeneration ossärer Defekte unter Anwendung eines nanopartikulären Hydroxylapatits (Ostim™). Implantologie 12:21–32

    Google Scholar 

  76. Trinkaus K, Wenisch S, Siemers C et al (2005) Bohrmehl: Eine Quelle vitaler Zellen! Erste Ergebnisse von humanen Proben. Unfallchirurg 108(8):650–656

    Article  PubMed  CAS  Google Scholar 

  77. Tsiridis E, Upadhyay N, Giannoudis P (2007) Molecular aspects of fracture healing: which are the important molecules? Injury 38(Suppl 1):11–25

    Article  Google Scholar 

  78. Volkmann R, Bretschneider K, Erlekampf E et al (2007) Revision surgery in high grade acetabular defects with thermodisinfected allografts. Z Orthop Unfall 145(Suppl 1):44–48

    Article  Google Scholar 

  79. Wenisch S, Trinkaus K, Hild A et al (2005) Human reaming debris: a source of multipotent stem cells. Bone 36(1):74–83

    Article  PubMed  Google Scholar 

  80. Zalavras CG, Singh A, Patzakis MJ (2007) Novel technique for medullary canal débridement in tibia and femur osteomyelitis. Clin Orthop Relat Res 461:31–34

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Rentsch or B. Rentsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rentsch, C., Rentsch, B., Scharnweber, D. et al. Knochenersatz. Unfallchirurg 115, 938–949 (2012). https://doi.org/10.1007/s00113-012-2238-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-012-2238-4

Schlüsselwörter

Keywords

Navigation