Skip to main content
Log in

Diagnostik der primären ziliären Dyskinesie

Empfehlungen in Zusammenarbeit mit Kartagener-Syndrom und Primäre Ciliäre Dyskinesie e. V.

Diagnostics of primary ciliary dyskinesia

Recommendations in cooperation with the Kartagener’s Syndrome and Primary Ciliary Dyskinesia Association

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Charakteristika

Die primäre ziliäre Dyskinesie (PCD) ist eine seltene angeborene Erkrankung der Zilien, die sich zumeist im respiratorischen System manifestiert.

Diagnostik

Bei klinischem Verdacht auf das Vorliegen einer PCD und/oder bei positivem Screening (erniedrigte nasale NO-Werte) sollten Patienten zeitnah weitere diagnostische Maßnahmen durchlaufen. In Zentren, in denen eine Hochfrequenzvideomikroskopieanalyse (HVMA) des Zilienschlags zur Verfügung steht, ist eine initiale nasale NO-Messung zum Screening nicht zwingend erforderlich. Als erste diagnostische Maßnahme zur Sicherung oder zum Ausschluss einer PCD sollte eine HVMA erfolgen. Bei auffälligem Befund sind eine transmissionselektronenmikroskopische Analyse (TEM) der Ultrastruktur und eine hochauflösende immunfluoreszenzmikroskopische Analyse (IF) der Zilien anzuschließen. Obligat für die Diagnosestellung sind mindestens 2 kongruente pathologische Befunde aus HVMA, TEM oder IF. Wenn eine PCD-Variante ohne Hinweis auf einen ultrastrukturellen Defekt vorliegt, muss ein identischer pathologischer Zilienschlag mittels HVMA an insgesamt 3 unabhängigen Terminen belegt werden. Danach sollte auf Basis der erhobenen Befunde für HVMA, TEM und IF eine gerichtete genetische Abklärung angestrebt werden. Ein eindeutiger genetischer Befund kann die Diagnose ebenfalls sichern.

Vorgehen

Bei Verdacht auf eine PCD soll Kontakt mit einem Diagnosezentrum aufgenommen werden. Ein Referenzzentrum für PCD-Diagnostik evaluiert unklare Befunde.

Abstract

Characteristics

Primary ciliary dyskinesia (PCD) is a rare congenital disease of the cilia which is mostly manifested in the respiratory system.

Diagnostics

When there is a clinical suspicion of the presence of PCD and/or a positive screening result with reduced nasal nitrogen oxide (NO) values, further diagnostic measures should be initiated as soon as possible. In centers where high-frequency video microscopy analyses (HVMA) of beating of cilia are available, an initial nasal NO measurement for screening must not necessarily be carried out. As the first diagnostic measure for confirmation or exclusion of PCD, HVMA should be carried out. If the findings are conspicuous transmission electron microscopic analysis (TEM) of the ciliary structure and high-resolution immunofluorescence (IF) microscopic analysis of the cilia should follow. Mandatory for diagnosis are at least two congruent pathological findings from HVMA, TEM or IF. When a PCD variant with no evidence of ultrastructural defects is present, an identical pathological beating of cilia must be demonstrated with HVMA on three independent occasions. Following that a targeted genetic clarification should be attempted based on the findings for HVMA, TEM and IF. A clear genetic result can also confirm the diagnosis.

Approach

When PCD is suspected contact with a diagnostic center should be made. A reference center for PCD diagnostics will evaluate uncertain findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Abbreviations

ATS:

American Thoracic Society

DNA:

Desoxyribonukleinsäure

DRC:

Dyneinarmregulatorkomplex

EDTA :

Ethylendiamintetraessigsäure

ERS:

European Respiratory Society

HVMA :

Hochfrequenzvideomikroskopieanalyse

IDA:

„Inner dynein arm“

IF :

Immunfluoreszenz

KS:

Kartagener-Syndrom

NO:

Stickstoffmonoxid

ODA:

„Outer dynein arm“

PCD:

„Primary ciliary dyskinesia“

ppb:

„Parts per billion“

RDS:

„Respiratory distress syndrome“

RPMI:

„Roswell Park Memorial Institute medium“

TEM:

Transmissionselektronenmikroskopie

Literatur

  1. American Thoracic Society, European Respiratory Society (2005) ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med 171:912–930

    Article  Google Scholar 

  2. Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148

    Article  PubMed  CAS  Google Scholar 

  3. Barbato A, Frischer T, Kuehni CE et al (2009) Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur Respir J 34(6):1264–1276

    Article  PubMed  CAS  Google Scholar 

  4. Becker-Heck A, Zohn IE, Okabe N et al (2011) The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet 43:79–84

    Article  PubMed  CAS  Google Scholar 

  5. Bencova A, Vidan J, Rozborilova E et al (2012) The impact of hypertonic saline inhalation on mucociliary clearance and nasal nitric oxide. J Physiol Pharmacol 63:309–313

    PubMed  CAS  Google Scholar 

  6. Budny B, Chen W, Omran H et al (2006) A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum Genet 120:171–178

    Article  PubMed  CAS  Google Scholar 

  7. Castleman VH, Romio L, Chodhari R et al (2009) Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am J Hum Genet 84:197–209

    Article  PubMed  CAS  Google Scholar 

  8. Chilvers MA, O′Callaghan C (2000) Analysis of ciliary beat pattern and beat frequency using digital high speed imaging: comparison with the photomultiplier and photodiode methods. Thorax 55:314–317

    Article  PubMed  CAS  Google Scholar 

  9. Chilvers MA, Rutman A, O′Callaghan C (2003) Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J Allergy Clin Immunol 112(3):518–524

    Article  PubMed  Google Scholar 

  10. Chilvers MA, Rutman A, O′Callaghan C (2003) Functional analysis of cilia and ciliated epithelial ultrastructure in healthy children and young adults. Thorax 58:333–338

    Article  PubMed  CAS  Google Scholar 

  11. Coren ME, Meeks M, Morrison I et al (2002) Primary ciliary dyskinesia: age at diagnosis and symptom history. Acta Paediatr 91:667–669

    Article  PubMed  CAS  Google Scholar 

  12. Duriez B, Duquesnoy P, Escusier E et al (2007) A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc Natl Acad Sci USA 104:3336–3341

    Article  PubMed  CAS  Google Scholar 

  13. Ferkol T, Mitchison HM, O′Callaghan C et al (2006) Chapter 16. Current issues in the basic mechanisms, pathophysiology, diagnosis and management of primary ciliary dyskinesia. Respiratory diseases in infants and children. Eur Respir Soc Mon 37:291–313

    Article  Google Scholar 

  14. Fliegauf M, Olbrich H, Horvath J et al (2005) Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 171(12):1343–1349

    Article  PubMed  Google Scholar 

  15. Horani A, Druley TE, Zariwala MA et al (2012) Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am J Hum Genet 91:685–693

    Article  PubMed  CAS  Google Scholar 

  16. Jung A, Geidel C, Moeller A et al (2011) Nasal NO measurement in preschool children: feasibility and validation of a tidal breathing technique via a resistance tube. 33. Jahrestagung der Gesellschaft für pädiatrische Pneumologie, Graz

  17. Karadag B, James AJ, Gültekin E et al (1999) Nasal and lower airway level of nitric oxide in children with primary ciliary dyskinesia. Eur Respir J 13:1402–1405

    Article  PubMed  CAS  Google Scholar 

  18. Knowles MR, Leigh MW, Ostrowski LE et al (2013) Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. Am J Hum Genet 92:99–106

    Article  PubMed  CAS  Google Scholar 

  19. Kott E, Duquesnoy P, Copin B et al (2012) Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am J Hum Genet 91:958–964

    Article  PubMed  CAS  Google Scholar 

  20. Loges NT, Olbrich H, Fenske L et al (2008) DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet 83(5):547–558

    Article  PubMed  CAS  Google Scholar 

  21. Loges NT, Olbrich H, Becker-Heck A et al (2009) Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am J Hum Genet 85:883–889

    Article  PubMed  CAS  Google Scholar 

  22. Lundberg JO, Weitzberg E, Nordvall SL et al (1994) Primarily nasal origin of exhaled nitric oxide and absence in Kartagener′s syndrome. Eur Respir J 7:1501–1504

    Article  PubMed  CAS  Google Scholar 

  23. Mateos-Corral D, Coombs R, Grasemann H et al (2011) Diagnostic value of nasal nitric oxide measured with non-velum closure techniques for children with primary ciliary dyskinesia. J Pediatr 159:420–424

    Article  PubMed  CAS  Google Scholar 

  24. Mazor M, Alkrinawi S, Chalifa-Caspi V et al (2011) Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am J Hum Genet 88:599–607

    Article  PubMed  CAS  Google Scholar 

  25. Merveille AC, Davis EE, Becker-Heck A et al (2011) CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet 43:72–78

    Article  PubMed  CAS  Google Scholar 

  26. Mitchison HM, Schmidts N, Loges NT et al (2012) Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat Genet 44:381–389

    Article  PubMed  CAS  Google Scholar 

  27. Moore A, Escudier E, Roger G et al (2006) RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet 43:326–333

    Article  PubMed  CAS  Google Scholar 

  28. Noll EM, Rieger CH, Hamelmann E et al (2011) Questionnaire to preselect patients with a high probability of primary ciliary dyskinesia. Klin Padiatr 223(1):22–26

    Article  PubMed  CAS  Google Scholar 

  29. Noone PG, Leigh MW, Sannuti A et al (2004) Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med 169:459–467

    Article  PubMed  Google Scholar 

  30. O′Callaghan C, Rutman A, Williams GM et al (2011) Inner dynein arm defects causing primary ciliary dyskinesia: repeat testing required. Eur Respir J 38(3):603–607

    Article  Google Scholar 

  31. Olbrich H, Häffner K, Kispert A et al (2002) Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet 30:143–144

    Article  PubMed  CAS  Google Scholar 

  32. Olbrich H, Horvath J, Fekete A et al (2006) Axonemal localization of the dynein component DNAH5 is not altered in secondary ciliary dyskinesia. Pediatr Res 59(3):418–422

    Article  PubMed  CAS  Google Scholar 

  33. Olbrich H, Schmidts M, Werner C et al (2012) Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet 91(4):672–684

    Article  PubMed  CAS  Google Scholar 

  34. Omran H, Kobayashi D, Olbrich H et al (2008) Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456:611–616

    Article  PubMed  CAS  Google Scholar 

  35. Onoufriadis A, Paff T, Antony D et al (2013) Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet 92:88–98

    Article  PubMed  CAS  Google Scholar 

  36. Panizzi JR, Becker-Heck A, Castleman VH et al (2012) CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet 44:714–719

    Article  PubMed  CAS  Google Scholar 

  37. Papon JF, Coste A, Roudot-Thoraval F et al (2010) A 20-year experience of electron microscopy in the diagnosis of primary ciliary dyskinesia. Eur Respir J 35:1057–1063

    Article  PubMed  CAS  Google Scholar 

  38. Pennarun G, Escudier E, Chapelin C et al (1999) Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet 65:1508–1519

    Article  PubMed  CAS  Google Scholar 

  39. Pfifferi M, Bush A, Maggi F et al (2011) Nasal nitric oxide and nitric oxide synthase expression in primary ciliary dyskinesia. Eur Respir J 37(3):572–577

    Article  Google Scholar 

  40. Pfifferi M, Caramella D, Cangiotti AM et al (2007) Nasal oxide in atypical primary dyskinesia. Chest 131:870–873

    Article  Google Scholar 

  41. Piacentini GL, Bodini A, Peroni DG et al (2010) Nasal nitric oxide levels in healthy pre-school children. Pediatr Allergy Immunol 21:1139–1145

    Article  PubMed  CAS  Google Scholar 

  42. Schwabe GC, Hoffmann K, Loges NT et al (2008) Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum Mutat 29:289–298

    Article  PubMed  CAS  Google Scholar 

  43. Stannard WA, Chilvers MA, Rutman A et al (2010) Diagnostic testing of patients suspected of primary ciliary dyskinesia. Am J Respir Crit Care Med 181(4):307–314

    Article  PubMed  Google Scholar 

  44. Theegarten D, Ebsen M (2011) Ultrastructural pathology of primary ciliary dyskinesia: report about 125 cases in Germany. Diagn Pathol 6:115

    Article  PubMed  Google Scholar 

  45. Walker WT, Jackson CL, Lackie PM et al (2012) Nitric oxide in primary ciliary dyskinesia. Eur Respir J 40:1024–1032

    Article  PubMed  CAS  Google Scholar 

  46. Wirschell M, Olbrich H, Werner C et al (2013) The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet 45(3):262–268

    Article  PubMed  CAS  Google Scholar 

  47. Yamada T, Yamamoto H, Kubo S et al (2012) Efficacy of mometasone furoate nasal spray for nasal symptoms, quality of life, rhinitis-disturbed sleep, and nasal nitric oxide in patients with perennial allergic rhinitis. Allergy Asthma Proc 33:e9–e16

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Omran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nüßlein, T., Brinkmann, F., Ahrens, P. et al. Diagnostik der primären ziliären Dyskinesie. Monatsschr Kinderheilkd 161, 406–416 (2013). https://doi.org/10.1007/s00112-012-2798-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-012-2798-y

Schlüsselwörter

Keywords

Navigation