Skip to main content

Advertisement

Log in

Two-trace two-dimensional correlation spectra (2T2D-COS) analysis using FTIR spectra to monitor the immune response by COVID-19

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

There is a growing trend in using saliva for SARS-CoV-2 detection with reasonable accuracy. We have studied the responses of IgA, IgG, and IgM in human saliva by directly comparing disease with control analyzing two-trace two-dimensional correlation spectra (2T2D-COS) employing Fourier transform infrared (FTIR) spectra. It explores the molecular-level variation between control and COVID-19 saliva samples. The advantage of 2T2D spectra is that it helps in discriminating remarkably subtle features between two simple pairs of spectra. It gives spectral information from highly overlapped bands associated with different systems. The clinical findings from 2T2D show the decrease of IgG and IgM salivary antibodies in the 50, 60, 65, and 75-years COVID-19 samples. Among the various COVID-19 populations studied the female 30-years group reveals defense mechanisms exhibited by IgM and IgA. Lipids and fatty acids decrease, resulting in lipid oxidation due to the SARS-CoV-2 in the samples studied. Study shows salivary thiocyanate plays defense against SARS-CoV-2 in the male population in 25 and 35 age groups. The receiver operation characteristics statistical method shows a sensitivity of 98% and a specificity of 94% for the samples studied. The measure of accuracy computed as F score and G score has a high value, supporting our study's validation. Thus, 2T2D-COS analysis can potentially monitor the progression of immunoglobulin's response function to COVID-19 with reasonable accuracy, which could help diagnose clinical trials.

Key messages

  • The molecular profile of salivary antibodies is well resolved and identified from 2T2D-COS FTIR spectra.

  • The IgG antibody plays a significant role in the defense mechanism against SARS-CoV-2 in 25–40 years.

  • 2T2D-COS reveals the absence of salivary thiocyanate in the 40–75 years COVID-19 population.

  • The receiver operation characteristic (ROC) analysis validates our study with high sensitivity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The article includes all the generated data and the analysis developed in this study.

References

  1. Beale DJ, Jones OA, Karpe AV, Dayalan S, Oh DY, Kouremenos KA, Ahmed W, Palombo EA (2016) A review of analytical techniques and their application in disease diagnosis in breathomics and salivaomics research. Int J Mol Sci 18(1):24. https://doi.org/10.3390/ijms18010024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Katsiougiannis S, Chia D, Kim Y, Singh RP, Wong DT (2017) Saliva exosomes from pancreatic tumor-bearing mice modulate NK cell phenotype and antitumor cytotoxicity. FASEB J 31(3):998–1010. https://doi.org/10.1096/fj.201600984R

    Article  CAS  PubMed  Google Scholar 

  3. Senevirathna K, Jayawardana NU, Jayasinghe RD, Seneviratne B, Perera AGU (2021) Diagnostic value of FTIR spectroscopy, metabolomic screening and molecular genetics in saliva for early detection of oral squamous cell carcinoma (OSCC). Med Clin Res 6(2):435–454

    Google Scholar 

  4. Geyer PE, Kulak NA, Pichler G, Holdt LM, Teupser D, Mann M (2016) Plasma proteome profiling to assess human health and disease. Cell Syst 2(3):185–195. https://doi.org/10.1016/j.cels.2016.02.015

    Article  CAS  PubMed  Google Scholar 

  5. Dingess KA, Hoek M, van Rijswijk DMH, Tamara S, den Boer MA, Veth T, Damen MJA, Barendregt A, Romijn M, Juncker HG et al (2023) Identification of common and distinct origins of human serum and breastmilk IgA1 by mass spectrometry-based clonal profiling. Cell Mol Immunol 20(1):26–37. https://doi.org/10.1038/s41423-022-00954-2

    Article  CAS  PubMed  Google Scholar 

  6. Ceylani T, Teker HT, Keskin S, Samgane G, Acikgoz E, Gurbanov R (2023) The rejuvenating influence of young plasma on aged intestine. J Cell Mol Med 27(18):2804–2816. https://doi.org/10.1111/jcmm.17926

    Article  PubMed  PubMed Central  Google Scholar 

  7. Caetano Júnior PC, Ferreira Strixino J, Raniero L (2015) Analysis of saliva by Fourier transform infrared spectroscopy for diagnosis of physiological stress in athletes. Res Biomed Eng 31(2):116–124. https://doi.org/10.1590/2446-4740.0664

    Article  Google Scholar 

  8. Bunaciu AA, Hoang VD, Aboul-Enein HY (2015) Applications of FT-IR spectrophotometry in cancer diagnostics. Crit Rev Anal Chem 45(2):156–165. https://doi.org/10.1080/10408347.2014.904733

    Article  CAS  PubMed  Google Scholar 

  9. Calvo-Gomez O, Calvo H, Cedillo-Barrón L, Vivanco-Cid H, Alvarado-Orozco JM, Fernandez-Benavides DA, Arriaga-Pizano L, Ferat-Osorio E, Anda-Garay JC, López-Macias C et al (2022) Potential of ATR-FTIR-chemometrics in Covid-19: disease recognition. ACS Omega 7(35):30756–30767. https://doi.org/10.1021/acsomega.2c01374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang L, Xiao M, Wang Y, Peng S, Chen Y, Zhang D, Zhang D, Guo Y, Wang X, Luo H et al (2021) Fast screening and primary diagnosis of COVID-19 by ATR-FT-IR. Anal Chem 93(4):2191–2199. https://doi.org/10.1021/acs.analchem.0c04049

    Article  CAS  PubMed  Google Scholar 

  11. Dogan A, Gurbanov R, Severcan M, Severcan F (2021) CoronaVac (Sinovac) COVID-19 vaccine-induced molecular changes in healthy human serum by infrared spectroscopy coupled with chemometrics. Turk J Biol 45(4):549–558. https://doi.org/10.3906/biy-2105-65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Karthikeyan S, Mata-Miranda MM, Martinez-Cuazitl A, Delgado-Macuil RJ, Garibay-Gonzalez F, Sanchez-Monroy V, Lopez-Reyes A, Rojas-Lopez M, Rivera-Alatorre DE, Vazquez-Zapien GJ (2023) Dynamic response antibodies SARS-CoV-2 human saliva studied using two-dimensional correlation (2DCOS) infrared spectral analysis coupled with receiver operation characteristics analysis. Biochim Biophys Acta Mol Basis Dis 1869:166799. https://doi.org/10.1016/j.bbadis.2023.166799

    Article  CAS  PubMed  Google Scholar 

  13. Noda I (2022) Estimating more than two pure component spectra from only two mixture spectra using two-dimensional correlation. Spectrochim Acta Part A Mol Biomol Spectrosc 276:121221. https://doi.org/10.1016/j.saa.2022.121221

    Article  CAS  Google Scholar 

  14. Sohng W, Eum C, Chung H (2021) Exploring two-trace two-dimensional (2T2D) correlation spectroscopy as an effective approach to improve accuracy of discriminant analysis by highlighting asynchronous features in two separate spectra of a sample. Anal Chim Acta 1152:338255. https://doi.org/10.1016/j.aca.2021.338255

    Article  CAS  PubMed  Google Scholar 

  15. Park Y, Jin S, Noda I, Jung YM (2023) Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. Spectrochim Acta A Mol Biomol Spectrosc 284:121636. https://doi.org/10.1016/j.saa.2022.121636

    Article  CAS  PubMed  Google Scholar 

  16. Noda I (2018) Two-trace two-dimensional (2T2D) correlation spectroscopy — A method for extracting useful information from a pair of spectra. J Mol Struct 1160:471–478. https://doi.org/10.1016/j.molstruc.2018.01.091

    Article  CAS  Google Scholar 

  17. Noda I (2020) Close examination of two-trace two-dimensional (2T2D) correlation spectroscopy. J Mol Str 1213:128194. https://doi.org/10.1016/j.molstruc.2020.128194

    Article  CAS  Google Scholar 

  18. Noda I (2021) Two-trace two-dimensional correlation spectroscopy study of the crystallization behavior of bioplastics. Appl Spectrosc 75(8):963–970. https://doi.org/10.1177/00037028211014165

    Article  CAS  PubMed  Google Scholar 

  19. Park Y, Jin S, Noda I, Jung YM (2020) Emerging developments in two-dimensional correlation spectroscopy (2D-COS). J Mol Str 1217:128405. https://doi.org/10.1016/j.molstruc.2020.128405

    Article  CAS  Google Scholar 

  20. Kavitha E, Devaraj Stephen L, Brishti FH, Karthikeyan S (2021) Two-trace two-dimensional (2T2D) correlation infrared spectral analysis of Spirulina platensis and its commercial food products coupled with chemometric analysis. J Mol St 1244:130964. https://doi.org/10.1016/j.molstruc.2021.130964

    Article  CAS  Google Scholar 

  21. Chicco D, Jurman G (2020) The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21(1):6. https://doi.org/10.1186/s12864-019-6413-7

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lovergne L, Ghosh D, Schuck R, Polyzos AA, Chen AD, Martin MC, Barnard ES, Brown JB, McMurray CT (2021) An infrared spectral biomarker accurately predicts neurodegenerative disease class in the absence of overt symptoms. Sci Rep 11(1):15598. https://doi.org/10.1038/s41598-021-93686-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Silva LG, Péres AFS, Freitas DLD, Morais CLM, Martin FL, Crispim JCO, Lima KMG (2020) ATR-FTIR spectroscopy in blood plasma combined with multivariate analysis to detect HIV infection in pregnant women. Sci Rep 10(1):20156. https://doi.org/10.1038/s41598-020-77378-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chicco D, Tötsch N, Jurman G (2021) The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Min 14(1):13. https://doi.org/10.1186/s13040-021-00244-z

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bel’skaya LV, Sarf EA (2021) Biochemical composition and characteristics of salivary FTIR spectra: correlation analysis. J Mol Liquids 341:117380. https://doi.org/10.1016/j.molliq.2021.117380

    Article  CAS  Google Scholar 

  26. Martinez-Cuazitl A, Vazquez-Zapien GJ, Sanchez-Brito M, Limon-Pacheco JH, Guerrero-Ruiz M, Garibay-Gonzalez F, Delgado-Macuil RJ, de Jesus MGG, Corona-Perezgrovas MA, Pereyra-Talamantes A et al (2021) ATR-FTIR spectrum analysis of saliva samples from COVID-19 positive patients. Sci Rep 11(1):19980. https://doi.org/10.1038/s41598-021-99529-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fujimoto S, Aoyagi M, Shinzawa H (2022) Nanodiamond (ND)-based polyamide (PA) 66 nanocomposite studied with infrared (IR) microscopy and time-domain nuclear magnetic resonance (TD-NMR) combined with two-trace two-dimensional (2T2D) correlation analysis. Spectrochim Acta Part A Mol Biomol Spectrosc 280:121572. https://doi.org/10.1016/j.saa.2022.121572

    Article  CAS  Google Scholar 

  28. Vazquez-Zapien GJ, Martinez-Cuazitl A, Sanchez-Brito M, Delgado-Macuil RJ, Atriano-Colorado C, Garibay-Gonzalez F, Sanchez-Monroy V, Lopez-Reyes A, Mata-Miranda MM (2022) Comparison of the immune response in vaccinated people positive and negative to SARS-CoV-2 employing FTIR spectroscopy. Cells 11(23):3884. https://doi.org/10.3390/cells11233884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martinez-Cuazitl A, Mata-Miranda MM, Sanchez-Brito M, Valencia-Trujillo D, Avila-Trejo Amanda M, Delgado-Macuil RJ, Atriano-Colorado C, Garibay-Gonzalez F, Sanchez-Monroy V, Vazquez-Zapien GJ (2023) Clinical, biochemical, and ATR-FTIR spectroscopic parameters associated with death or survival in patients with severe COVID-19. J Spectrosc 2023:3423183. https://doi.org/10.1155/2023/3423183

    Article  CAS  Google Scholar 

  30. Zahorec R (2021) Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl Lek Listy 122(7):474–488. https://doi.org/10.4149/BLL_2021_078

    Article  CAS  PubMed  Google Scholar 

  31. Hossein-Khannazer N, Shokoohian B, Shpichka A, Aghdaei HA, Timashev P, Vosough M (2020) Novel therapeutic approaches for treatment of COVID-19. J Mol Med (Berl) 98(6):789–803. https://doi.org/10.1007/s00109-020-01927-6

    Article  CAS  PubMed  Google Scholar 

  32. Rodrigues RP, Aguiar EM, Cardoso-Sousa L, Caixeta DC, Guedes CC, Siqueira WL, Maia YCP, Cardoso SV, Sabino-Silva R (2019) Differential molecular signature of human saliva using ATR-FTIR spectroscopy for chronic kidney disease diagnosis. Braz Dent J 30(5):437–445. https://doi.org/10.1590/0103-6440201902228

    Article  PubMed  Google Scholar 

  33. Courtois P (2021) Oral peroxidases: from antimicrobial agents to ecological actors (Review). Mol Med Rep 24(1):500. https://doi.org/10.3892/mmr.2021.12139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kazmer ST, Hartel G, Robinson H, Richards RS, Yan K, van Hal SJ, Chan R, Hind A, Bradley D, Zieschang F et al (2022) Pathophysiological response to SARS-CoV-2 infection detected by infrared spectroscopy enables rapid and robust saliva screening for COVID-19. Biomedicines 10(2):351. https://doi.org/10.3390/biomedicines10020351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duś-Ilnicka I, Krala E, Cholewińska P, Radwan-Oczko M (2021) The use of saliva as a biosample in the light of COVID-19. Diagnostics (Basel) 11(10):1769. https://doi.org/10.3390/diagnostics11101769

    Article  CAS  PubMed  Google Scholar 

  36. Masoodi M, Peschka M, Schmiedel S, Haddad M, Frye M, Maas C, Lohse A, Huber S, Kirchhof P, Nofer JR et al (2022) Disturbed lipid and amino acid metabolisms in COVID-19 patients. J Mol Med (Berl) 100(4):555–568. https://doi.org/10.1007/s00109-022-02177-4

    Article  CAS  PubMed  Google Scholar 

  37. Xiang XM, Liu KZ, Man A, Ghiabi E, Cholakis A, Scott DA (2010) Periodontitis-specific molecular signatures in gingival crevicular fluid. J Periodontal Res 45(3):345–352. https://doi.org/10.1111/j.1600-0765.2009.01243.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guleken Z, Jakubczyk P, Wiesław P, Krzysztof P, Bulut H, Öten E, Depciuch J, Tarhan N (2022) Characterization of Covid-19 infected pregnant women sera using laboratory indexes, vibrational spectroscopy, and machine learning classifications. Talanta 15(237):122916. https://doi.org/10.1016/j.talanta.2021.122916

    Article  CAS  Google Scholar 

  39. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, Wang X, Yuan J, Li T, Li J et al (2020) Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin Infect Dis 71(16):2027–2034. https://doi.org/10.1093/cid/ciaa344

    Article  CAS  PubMed  Google Scholar 

  40. von Metzler I, Campe J, Huenecke S, Raab MS, Goldschmidt H, Schubert R, Rabenau HF, Ciesek S, Serve H, Ullrich E (2022) COVID-19 in multiple-myeloma patients: cellular and humoral immunity against SARS-CoV-2 in a short- and long-term view. J Mol Med (Berl) 100(3):463–470. https://doi.org/10.1007/s00109-021-02114-x

    Article  CAS  Google Scholar 

  41. Barrett CT, Dutch RE (2020) Viral membrane fusion and the transmembrane domain. Viruses 12(7):693. https://doi.org/10.3390/v12070693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Touma M (2020) COVID-19: molecular diagnostics overview. J Mol Med (Berl) 98(7):947–954. https://doi.org/10.1007/s00109-020-01931-w

    Article  CAS  PubMed  Google Scholar 

  43. Secchi M, Bazzigaluppi E, Brigatti C, Marzinotto I, Tresoldi C, Rovere-Querini P, Poli A, Castagna A, Scarlatti G, Zangrillo A et al (2020) COVID-19 survival associates with the immunoglobulin response to the SARS-CoV-2 spike receptor binding domain. J Clin Invest 130(12):6366–6378. https://doi.org/10.1172/JCI142804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brouwer PJM, Caniels TG, van der Straten K, Snitselaar JL, Aldon Y, Bangaru S, Torres JL, Okba NMA, Claireaux M, Kerster G et al (2020) Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science 369(6504):643–650. https://doi.org/10.1126/science.abc5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Isho B, Abe KT, Zuo M, Jamal AJ, Rathod B, Wang JH, Li Z, Chao G, Rojas OL, Bang YM et al (2020) Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci Immunol. 5(52):eabe5511. https://doi.org/10.1126/sciimmunol.abe5511

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wood BR, Kochan K, Bedolla DE, Salazar-Quiroz N, Grimley SL, Perez-Guaita D, Baker MJ, Vongsvivut J, Tobin MJ, Bambery KR et al (2021) Infrared based saliva screening test for COVID-19. Angew Chem Int Ed Engl 60(31):17102–17107. https://doi.org/10.1002/anie.202104453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gupta AD, Kavitha E, Singh S, Karthikeyan S (2020) Toxicity mechanism of Cu2+ ion individually and in combination with Zn2+ ion in characterizing the molecular changes of Staphylococcus aureus studied using FTIR coupled with chemometric analysis. J Biol Phys 46(4):395–414. https://doi.org/10.1007/s10867-020-09560-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Velmurugan B, Devaraj Stephen L, Karthikeyan S, Kumari SB (2022) Biomolecular changes in gills of Gambusia affinis studied using two dimensional correlation infrared spectroscopy coupled with chemometric analysis. J Mol Str 1262:132965. https://doi.org/10.1016/j.molstruc.2022.132965

    Article  CAS  Google Scholar 

  49. Caixeta DC, Aguiar EMG, Cardoso-Sousa L, Coelho LMD, Oliveira SW, Espindola FS, Raniero L, Crosara KTB, Baker MJ, Siqueira WL et al (2020) Salivary molecular spectroscopy: A sustainable, rapid and non-invasive monitoring tool for diabetes mellitus during insulin treatment. PLoS ONE 15(3):e0223461. https://doi.org/10.1371/journal.pone.0223461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nogueira MS, Leal LB, Marcarini WD, Pimentel RL, Muller M, Vassallo PF, Campos LCG, Dos Santos L, Luiz WB, Mill JG et al (2021) Rapid diagnosis of COVID-19 using FT-IR ATR spectroscopy and machine learning. Sci Rep 11(1):15409. https://doi.org/10.1038/s41598-021-93511-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Miguel Sanchez-Brito for his initial contributions to the project during his stay at the Military School of Medicine and the people who kindly agreed to participate and provided a saliva sample.

Funding

This work was supported by the A022-2021 (SEDENA) budgetary program from the C.I.D.E.F.A.M.

Author information

Authors and Affiliations

Authors

Contributions

SK performed the data analysis, wrote the original draft, reviewed it, and edited it. GJVZ, AMC, RJDM, and MMMM designed and submitted the project, managed the resources, wrote the initial draft, and reviewed it. DERA, JDG, DVT, MGR, CAC, and DJLM collected clinical data, organized data, reviewed, and edited. FGG and ALR provide important suggestions about manuscript writing. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Sivakumaran Karthikeyan, Gustavo J. Vazquez-Zapien or Monica M. Mata-Miranda.

Ethics declarations

Ethics approval and consent to participate

The Clinical Research Ethics Committee of the Hospital Central Militar of the Secretaria de la Defensa Nacional approved the protocol (C.INV.-034) and informed consent. The healthy patients were informed that their samples would be used for different diagnostic assays as a reference control, and the COVID-19 patients were told that their samples would be used to try other types of diagnosis.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 382 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeyan, S., Vazquez-Zapien, G.J., Martinez-Cuazitl, A. et al. Two-trace two-dimensional correlation spectra (2T2D-COS) analysis using FTIR spectra to monitor the immune response by COVID-19. J Mol Med 102, 53–67 (2024). https://doi.org/10.1007/s00109-023-02390-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02390-9

Keywords

Navigation