Skip to main content

Advertisement

Log in

Potential role for protein kinase D inhibitors in prostate cancer

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Protein kinase D (PrKD), a novel serine-threonine kinase, belongs to a family of calcium calmodulin kinases that consists of three isoforms: PrKD1, PrKD2, and PrKD3. The PrKD isoforms play a major role in pathologic processes such as cardiac hypertrophy and cancer progression. The charter member of the family, PrKD1, is the most extensively studied isoform. PrKD play a dual role as both a proto-oncogene and a tumor suppressor depending on the cellular context. The duplicity of PrKD can be highlighted in advanced prostate cancer (PCa) where expression of PrKD1 is suppressed whereas the expressions of PrKD2 and PrKD3 are upregulated to aid in cancer progression. As understanding of the PrKD signaling pathways has been better elucidated, interest has been garnered in the development of PrKD inhibitors. The broad-spectrum kinase inhibitor staurosporine acts as a potent PrKD inhibitor and is the most well-known; however, several other novel and more specific PrKD inhibitors have been developed over the last two decades. While there is tremendous potential for PrKD inhibitors to be used in a clinical setting, none has progressed beyond preclinical trials due to a variety of challenges. In this review, we focus on PrKD signaling in PCa and the potential role of PrKD inhibitors therein, and explore the possible clinical outcomes based on known function and expression of PrKD isoforms at different stages of PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

All data relevant to this review are included in the text, references, and figures.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA: A Cancer J Clin 73(1):17–48

  2. Litwin MS, Tan HJ (2017) The diagnosis and treatment of prostate cancer: a review. JAMA 317(24):2532–2542

    Article  PubMed  Google Scholar 

  3. Kelly SP, Anderson WF, Rosenberg PS, Cook MB (2018) Past, current, and future incidence rates and burden of metastatic prostate cancer in the United States. Eur Urol Focus 4(1):121–127

    Article  PubMed  Google Scholar 

  4. Shore ND (2020) Current and future management of locally advanced and metastatic prostate cancer. Rev Urol 22(3):110–123

    PubMed  PubMed Central  Google Scholar 

  5. Khoshkar Y, Westerberg M, Adolfsson J, Bill-Axelson A, Olsson H, Eklund M et al (2022) Mortality in men with castration-resistant prostate cancer—a long-term follow-up of a population-based real-world cohort. BJUI Compass 3(2):173–183

    Article  PubMed  Google Scholar 

  6. Ritch C, Cookson M (2018) Recent trends in the management of advanced prostate cancer. F1000Res 7

  7. Zhang X, Connelly J, Chao Y, Wang QJ (2021) Multifaceted functions of protein kinase D in pathological processes and human diseases. Biomolecules 11(3)

  8. Youssef I, Ricort JM (2019) Deciphering the role of protein kinase D1 (PKD1) in cellular proliferation. Mol Cancer Res 17(10):1961–1974

    Article  CAS  PubMed  Google Scholar 

  9. Miller DR, Ingersoll MA, Teply BA, Lin MF (2021) Targeting treatment options for castration-resistant prostate cancer. Am J Clin Exp Urol 9(1):101–120

    PubMed  PubMed Central  Google Scholar 

  10. Roy A, Ye J, Deng F, Wang QJ (2017) Protein kinase D signaling in cancer: a friend or foe? Biochim Biophys Acta Rev Cancer 1868(1):283–294

    Article  CAS  PubMed  Google Scholar 

  11. Hsu LS, Chen GD, Lee LS, Chi CW, Cheng JF, Chen JY (2001) Human Ca2+/calmodulin-dependent protein kinase kinase beta gene encodes multiple isoforms that display distinct kinase activity. J Biol Chem 276(33):31113–31123

    Article  CAS  PubMed  Google Scholar 

  12. Rozengurt E (2011) Protein kinase D signaling: multiple biological functions in health and disease. Physiology (Bethesda) 26(1):23–33

    CAS  PubMed  Google Scholar 

  13. Waldron RT, Rozengurt E (2003) Protein kinase C phosphorylates protein kinase D activation loop Ser744 and Ser748 and releases autoinhibition by the pleckstrin homology domain. J Biol Chem 278(1):154–163

    Article  CAS  PubMed  Google Scholar 

  14. Sommese RF, Ritt M, Swanson CJ, Sivaramakrishnan S (2017) The role of regulatory domains in maintaining autoinhibition in the multidomain kinase PKCα. J Biol Chem 292(7):2873–2880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Steinberg SF (2008) Structural basis of protein kinase C isoform function. Physiol Rev 88(4):1341–1378

    Article  CAS  PubMed  Google Scholar 

  16. Dries DR, Gallegos LL, Newton AC (2007) A single residue in the C1 domain sensitizes novel protein kinase C isoforms to cellular diacylglycerol production. J Biol Chem 282(2):826–830

    Article  CAS  PubMed  Google Scholar 

  17. Toker A (2005) The biology and biochemistry of diacylglycerol signalling. Meeting on molecular advances in diacylglycerol signalling. EMBO Rep 6(4):310–314

  18. Storz P, Döppler H, Toker A (2004) Protein kinase Cdelta selectively regulates protein kinase D-dependent activation of NF-kappaB in oxidative stress signaling. Mol Cell Biol 24(7):2614–2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Steinberg SF (2012) Regulation of protein kinase D1 activity. Mol Pharmacol 81(3):284–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pusapati GV, Krndija D, Armacki M, von Wichert G, von Blume J, Malhotra V et al (2010) Role of the second cysteine-rich domain and Pro275 in protein kinase D2 interaction with ADP-ribosylation factor 1, trans-Golgi network recruitment, and protein transport. Mol Biol Cell 21(6):1011–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou YY, Li Y, Jiang WQ, Zhou LF (2015) MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep 35(3)

  22. Karam M, Bièche I, Legay C, Vacher S, Auclair C, Ricort JM (2014) Protein kinase D1 regulates ERα-positive breast cancer cell growth response to 17β-estradiol and contributes to poor prognosis in patients. J Cell Mol Med 18(12):2536–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McEneaney V, Dooley R, Harvey BJ, Thomas W (2010) Protein kinase D stabilizes aldosterone-induced ERK1/2 MAP kinase activation in M1 renal cortical collecting duct cells to promote cell proliferation. J Steroid Biochem Mol Biol 118(1–2):18–28

    Article  CAS  PubMed  Google Scholar 

  24. Karam M, Legay C, Auclair C, Ricort JM (2012) Protein kinase D1 stimulates proliferation and enhances tumorigenesis of MCF-7 human breast cancer cells through a MEK/ERK-dependent signaling pathway. Exp Cell Res 318(5):558–569

    Article  CAS  PubMed  Google Scholar 

  25. Kumari S, Khan S, Sekhri R, Mandil H, Behrman S, Yallapu MM et al (2020) Protein kinase D1 regulates metabolic switch in pancreatic cancer via modulation of mTORC1. Br J Cancer 122(1):121–131

    Article  CAS  PubMed  Google Scholar 

  26. Ren B (2016) Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis. Front Cell Dev Biol 4:37

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rashel M, Alston N, Ghazizadeh S (2014) Protein kinase D1 has a key role in wound healing and skin carcinogenesis. J Invest Dermatol 134(4):902–909

    Article  CAS  PubMed  Google Scholar 

  28. Eiseler T, Döppler H, Yan IK, Goodison S, Storz P (2009) Protein kinase D1 regulates matrix metalloproteinase expression and inhibits breast cancer cell invasion. Breast Cancer Res 11(1):R13

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim M, Jang HR, Kim JH, Noh SM, Song KS, Cho JS et al (2008) Epigenetic inactivation of protein kinase D1 in gastric cancer and its role in gastric cancer cell migration and invasion. Carcinogenesis 29(3):629–637

    Article  CAS  PubMed  Google Scholar 

  30. Mak P, Jaggi M, Syed V, Chauhan SC, Hassan S, Biswas H et al (2008) Protein kinase D1 (PKD1) influences androgen receptor (AR) function in prostate cancer cells. Biochem Biophys Res Commun 373(4):618–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sundram V, Ganju A, Hughes JE, Khan S, Chauhan SC, Jaggi M (2014) Protein kinase D1 attenuates tumorigenesis in colon cancer by modulating β-catenin/T cell factor activity. Oncotarget 5(16):6867–6884

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu B, Chen SC, Yang YM, Yan K, Qian YQ, Zhang JY et al (2015) Identification of novel PKD1 and PKD2 mutations in a Chinese population with autosomal dominant polycystic kidney disease. Sci Rep 5:17468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Auer A, von Blume J, Sturany S, von Wichert G, Van Lint J, Vandenheede J et al (2005) Role of the regulatory domain of protein kinase D2 in phorbol ester binding, catalytic activity, and nucleocytoplasmic shuttling. Mol Biol Cell 16(9):4375–4385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eiseler T, Wille C, Koehler C, Illing A, Seufferlein T (2016) Protein kinase D2 assembles a multiprotein complex at the trans-golgi network to regulate matrix metalloproteinase secretion. J Biol Chem 291(1):462–477

    Article  CAS  PubMed  Google Scholar 

  35. Nhek S, Ngo M, Yang X, Ng MM, Field SJ, Asara JM et al (2010) Regulation of oxysterol-binding protein golgi localization through protein kinase D–mediated phosphorylation. Mol Biol Cell 21(13):2327–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bernhart E, Damm S, Wintersperger A, DeVaney T, Zimmer A, Raynham T et al (2013) Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro. Exp Cell Res 319(13):2037–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Y, Li J, Ma Z, Zhang J, Wang Y, Yu Z et al (2019) Oncogenic functions of protein kinase D2 and D3 in regulating multiple cancer-related pathways in breast cancer. Cancer Med 8(2):729–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu Y, Cheng Y, Guo Y, Chen J, Chen F, Luo R et al (2016) Protein kinase D2 contributes to TNF-α-induced epithelial mesenchymal transition and invasion via the PI3K/GSK-3β/β-catenin pathway in hepatocellular carcinoma. Oncotarget 7(5):5327–5341

    Article  PubMed  Google Scholar 

  39. Kamran M, Long ZJ, Xu D, Lv SS, Liu B, Wang CL et al (2017) Aurora kinase A regulates Survivin stability through targeting FBXL7 in gastric cancer drug resistance and prognosis. Oncogenesis 6(2)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mihailovic T, Marx M, Auer A, Van Lint J, Schmid M, Weber C et al (2004) Protein kinase D2 mediates activation of nuclear factor κB by Bcr-Abl in Bcr-Abl+ human myeloid leukemia cells. Can Res 64(24):8939–8944

    Article  CAS  Google Scholar 

  41. Chauvet V, Qian F, Boute N, Cai Y, Phakdeekitacharoen B, Onuchic LF et al (2002) Expression of PKD1 and PKD2 transcripts and proteins in human embryo and during normal kidney development. Am J Pathol 160(3):973–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Navarro MN, Sinclair LV, Feijoo-Carnero C, Clarke R, Matthews SA, Cantrell DA (2012) Protein kinase D2 has a restricted but critical role in T-cell antigen receptor signalling in mature T-cells. Biochem J 442(3):649–659

    Article  CAS  PubMed  Google Scholar 

  43. Matthews SA, Navarro MN, Sinclair LV, Emslie E, Feijoo-Carnero C, Cantrell DA (2010) Unique functions for protein kinase D1 and protein kinase D2 in mammalian cells. Biochem J 432(1):153–163

    Article  CAS  PubMed  Google Scholar 

  44. Azoitei N, Cobbaut M, Becher A, Van Lint J, Seufferlein T (2018) Protein kinase D2: a versatile player in cancer biology. Oncogene 37(10):1263–1278

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y, Song H, Zhou Y, Ma X, Xu J, Yu Z et al (2021) The oncogenic role of protein kinase D3 in cancer. J Cancer 12(3):735–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang H, Zhu X, Zhu Y, Liu J, Hu X, Wang Y et al (2014) Protein kinase D3 is essential for prostratin-activated transcription of integrated HIV-1 provirus promoter via NF-<i>κ</i>B signaling pathway. Biomed Res Int 2014

    PubMed  PubMed Central  Google Scholar 

  47. Sánchez-Ruiloba L, Cabrera-Poch N, Rodríguez-Martínez M, López-Menéndez C, Jean-Mairet RM, Higuero AM et al (2006) Protein kinase D intracellular localization and activity control kinase D-interacting substrate of 220-kDa traffic through a postsynaptic density-95/discs large/zonula occludens-1-binding motif. J Biol Chem 281(27):18888–18900

    Article  PubMed  Google Scholar 

  48. Yeaman C, Ayala MI, Wright JR, Bard F, Bossard C, Ang A et al (2004) Protein kinase D regulates basolateral membrane protein exit from trans-Golgi network. Nat Cell Biol 6(2):106–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rey O, Yuan J, Young SH, Rozengurt E (2003) Protein kinase C nu/protein kinase D3 nuclear localization, catalytic activation, and intracellular redistribution in response to G protein-coupled receptor agonists. J Biol Chem 278(26):23773–23785

    Article  CAS  PubMed  Google Scholar 

  50. Roy A, Wang QJ (2017) Protein kinase D: a potential therapeutic target in prostate cancer. Mol Cell Pharmacol 9(1):1–4

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Du C, Zhang C, Hassan S, Biswas MH, Balaji KC (2010) Protein kinase D1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail. Cancer Res 70(20):7810–7819

    Article  CAS  PubMed  Google Scholar 

  52. Zou Z, Zeng F, Xu W, Wang C, Ke Z, Wang QJ et al (2012) PKD2 and PKD3 promote prostate cancer cell invasion by modulating NF-κB- and HDAC1-mediated expression and activation of uPA. J Cell Sci 125(Pt 20):4800–4811

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ganju A, Chauhan SC, Hafeez BB, Doxtater K, Tripathi MK, Zafar N et al (2018) Protein kinase D1 regulates subcellular localisation and metastatic function of metastasis-associated protein 1. Br J Cancer 118(4):587–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nickkholgh B, Sittadjody S, Rothberg MB, Fang X, Li K, Chou JW et al (2017) Beta-catenin represses protein kinase D1 gene expression by non-canonical pathway through MYC/MAX transcription complex in prostate cancer. Oncotarget 8(45):78811–78824

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang L, Zhao Z, Xu S, Tandon M, LaValle CR, Deng F et al (2017) Androgen suppresses protein kinase D1 expression through fibroblast growth factor receptor substrate 2 in prostate cancer cells. Oncotarget 8(8):12800–12811

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mulholland DJ, Cheng H, Reid K, Rennie PS, Nelson CC (2002) The androgen receptor can promote beta-catenin nuclear translocation independently of adenomatous polyposis coli. J Biol Chem 277(20):17933–17943

    Article  CAS  PubMed  Google Scholar 

  57. Zoubeidi A, Zardan A, Beraldi E, Fazli L, Sowery R, Rennie P et al (2007) Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res 67(21):10455–10465

    Article  CAS  PubMed  Google Scholar 

  58. Jaggi M, Rao PS, Smith DJ, Wheelock MJ, Johnson KR, Hemstreet GP et al (2005) E-cadherin phosphorylation by protein kinase D1/protein kinase C{mu} is associated with altered cellular aggregation and motility in prostate cancer. Cancer Res 65(2):483–492

    Article  CAS  PubMed  Google Scholar 

  59. Biswas MH, Du C, Zhang C, Straubhaar J, Languino LR, Balaji KC (2010) Protein kinase D1 inhibits cell proliferation through matrix metalloproteinase-2 and matrix metalloproteinase-9 secretion in prostate cancer. Cancer Res 70(5):2095–2104

    Article  PubMed  Google Scholar 

  60. Lv D, Chen H, Feng Y, Cui B, Kang Y, Zhang P et al (2021) Small-molecule inhibitor targeting protein kinase D: a potential therapeutic strategy. Front Oncol11

  61. Xu W, Qian J, Zeng F, Li S, Guo W, Chen L et al (2019) Protein kinase Ds promote tumor angiogenesis through mast cell recruitment and expression of angiogenic factors in prostate cancer microenvironment. J Exp Clin Cancer Res 38(1):114

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen J, Giridhar KV, Zhang L, Xu S, Wang QJ (2011) A protein kinase C/protein kinase D pathway protects LNCaP prostate cancer cells from phorbol ester-induced apoptosis by promoting ERK1/2 and NF-{kappa}B activities. Carcinogenesis 32(8):1198–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roy A, Veroli MV, Prasad S, Wang QJ (2018) Protein kinase D2 modulates cell cycle by stabilizing Aurora A kinase at centrosomes. Mol Cancer Res 16(11):1785–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu Y, Song H, Yu S, Huang KH, Ma X, Zhou Y et al (2020) Protein kinase D3 promotes the cell proliferation by activating the ERK1/c-MYC axis in breast cancer. J Cell Mol Med 24(3):2135–2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. LaValle CR, George KM, Sharlow ER, Lazo JS, Wipf P, Wang QJ (2010) Protein kinase D as a potential new target for cancer therapy. Biochim Biophys Acta 1806(2):183–192

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lall RK, Syed DN, Adhami VM, Khan MI, Mukhtar H (2015) Dietary polyphenols in prevention and treatment of prostate cancer. Int J Mol Sci 16(2):3350–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Park BS, Abdel-Azeem AZ, Al-Sanea MM, Yoo KH, Tae JS, Lee SH (2013) Staurosporine analogues from microbial and synthetic sources and their biological activities. Curr Med Chem 20(31):3872–3902

    Article  CAS  PubMed  Google Scholar 

  69. Tandon M, Wang L, Xu Q, Xie X, Wipf P, Wang QJ (2012) A targeted library screen reveals a new inhibitor scaffold for protein kinase D. PLoS ONE 7(9)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ko JH, Sethi G, Um JY, Shanmugam MK, Arfuso F, Kumar AP et al (2017) The role of resveratrol in cancer therapy. Int J Mol Sci 18(12)

  71. Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M et al (2018) Resveratrol: a double-edged sword in health benefits. Biomedicines 6(3)

  72. Sharlow ER, Giridhar KV, LaValle CR, Chen J, Leimgruber S, Barrett R et al (2008) Potent and selective disruption of protein kinase D functionality by a benzoxoloazepinolone. J Biol Chem 283(48):33516–33526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bravo-Altamirano K, George KM, Frantz M-C, Lavalle CR, Tandon M, Leimgruber S et al (2011) Synthesis and structure-activity relationships of benzothienothiazepinone inhibitors of protein kinase D. ACS Med Chem Lett 2(2):154–159

    Article  CAS  PubMed  Google Scholar 

  74. LaValle CR, Bravo-Altamirano K, Giridhar KV, Chen J, Sharlow E, Lazo JS et al (2010) Novel protein kinase D inhibitors cause potent arrest in prostate cancer cell growth and motility. BMC Chem Biol 10(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  75. George KM, Frantz MC, Bravo-Altamirano K, Lavalle CR, Tandon M, Leimgruber S et al (2011) Design, synthesis, and biological evaluation of PKD inhibitors. Pharmaceutics 3(2):186–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guo J, Clausen DM, Beumer JH, Parise RA, Egorin MJ, Bravo-Altamirano K et al (2013) In vitro cytotoxicity, pharmacokinetics, tissue distribution, and metabolism of small-molecule protein kinase D inhibitors, kb-NB142-70 and kb-NB165-09, in mice bearing human cancer xenografts. Cancer Chemother Pharmacol 71(2):331–344

    Article  CAS  PubMed  Google Scholar 

  77. Tandon M, Salamoun JM, Carder EJ, Farber E, Xu S, Deng F et al (2015) SD-208, a novel protein kinase D inhibitor, blocks prostate cancer cell proliferation and tumor growth in vivo by inducing G2/M cell cycle arrest. PLoS ONE 10(3)

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fournier PG, Juárez P, Jiang G, Clines GA, Niewolna M, Kim HS et al (2015) The TGF-β signaling regulator PMEPA1 suppresses prostate cancer metastases to bone. Cancer Cell 27(6):809–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Harikumar KB, Kunnumakkara AB, Ochi N, Tong Z, Deorukhkar A, Sung B et al (2010) A novel small-molecule inhibitor of protein kinase D blocks pancreatic cancer growth in vitro and in vivo. Mol Cancer Ther 9(5):1136–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ochi N, Tanasanvimon S, Matsuo Y, Tong Z, Sung B, Aggarwal BB et al (2011) Protein kinase D1 promotes anchorage-independent growth, invasion, and angiogenesis by human pancreatic cancer cells. J Cell Physiol 226(4):1074–1081

    Article  CAS  PubMed  Google Scholar 

  81. Borges S, Perez EA, Thompson EA, Radisky DC, Geiger XJ, Storz P (2015) Effective targeting of estrogen receptor-negative breast cancers with the protein kinase D inhibitor CRT0066101. Mol Cancer Ther 14(6):1306–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim do Y, Park EY, Chang E, Kang HG, Koo Y, Lee EJ et al (2016) A novel miR-34a target, protein kinase D1, stimulates cancer stemness and drug resistance through GSK3/β-catenin signaling in breast cancer. Oncotarget 7(12):14791–14802

  83. Liu Y, Wang Y, Yu S, Zhou Y, Ma X, Su Q et al (2019) The role and mechanism of CRT0066101 as an effective drug for treatment of triple-negative breast cancer. Cell Physiol Biochem 52(3):382–396

    Article  CAS  PubMed  Google Scholar 

  84. Li QQ, Hsu I, Sanford T, Railkar R, Balaji N, Sourbier C et al (2018) Protein kinase D inhibitor CRT0066101 suppresses bladder cancer growth in vitro and xenografts via blockade of the cell cycle at G2/M. Cell Mol Life Sci 75(5):939–963

    Article  CAS  PubMed  Google Scholar 

  85. Wei N, Chu E, Wipf P, Schmitz JC (2014) Protein kinase d as a potential chemotherapeutic target for colorectal cancer. Mol Cancer Ther 13(5):1130–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wei N, Chu E, Wu SY, Wipf P, Schmitz JC (2015) The cytotoxic effects of regorafenib in combination with protein kinase D inhibition in human colorectal cancer cells. Oncotarget 6(7):4745–4756

    Article  PubMed  Google Scholar 

  87. Guedán A, Swieboda D, Charles M, Toussaint M, Johnston SL, Asfor A et al (2017) Investigation of the role of protein kinase D in human rhinovirus replication. J Virol 91(9)

  88. Evans IM, Bagherzadeh A, Charles M, Raynham T, Ireson C, Boakes A et al (2010) Characterization of the biological effects of a novel protein kinase D inhibitor in endothelial cells. Biochem J 429(3):565–572

    Article  CAS  PubMed  Google Scholar 

  89. Wynn ML, Ventura AC, Sepulchre JA, García HJ, Merajver SD (2011) Kinase inhibitors can produce off-target effects and activate linked pathways by retroactivity. BMC Syst Biol 5:156

    Article  PubMed  PubMed Central  Google Scholar 

  90. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222

  91. Xiao Y, Wang C, Chen J-Y, Lu F, Wang J, Hou N et al (2018) Deficiency of PRKD2 triggers hyperinsulinemia and metabolic disorders. Nat Commun 9(1):2015

    Article  PubMed  PubMed Central  Google Scholar 

  92. Li C, Li J, Cai X, Sun H, Jiao J, Bai T et al (2011) Protein kinase D3 is a pivotal activator of pathological cardiac hypertrophy by selectively increasing the expression of hypertrophic transcription factors. J Biol Chem 286(47):40782–40791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W et al (2007) Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer 7:64

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L et al (2004) Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol 22(14):2790–2799

    Article  CAS  PubMed  Google Scholar 

  95. Marchetti A, Rosellini M, Nuvola G, Tassinari E, Mollica V, Rizzo A et al (2022) PARP inhibitors and radiometabolic approaches in metastatic castration-resistant prostate cancer: what’s now, what’s new, and what’s coming? Cancers (Basel) 14(4)

  96. Rice MA, Malhotra SV, Stoyanova T (2019) Second-generation antiandrogens: from discovery to standard of care in castration resistant prostate cancer. Front Oncol 9:801

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ehsani M, David FO, Baniahmad A (2021) Androgen receptor-dependent mechanisms mediating drug resistance in prostate cancer. Cancers (Basel) 13(7)

  98. Watson PA, Arora VK, Sawyers CL (2015) Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer 15(12):701–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Perlmutter MA, Lepor H (2007) Androgen deprivation therapy in the treatment of advanced prostate cancer. Rev Urol 9 Suppl 1(Suppl 1):S3–8

  100. Kiwerska K, Szyfter K (2019) DNA repair in cancer initiation, progression, and therapy-a double-edged sword. J Appl Genet 60(3–4):329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhou P, Wang J, Mishail D, Wang CY (2020) Recent advancements in PARP inhibitors-based targeted cancer therapy. Precis Clin Med 3(3):187–201

    Article  PubMed  PubMed Central  Google Scholar 

  102. Nizialek E, Antonarakis ES (2020) PARP inhibitors in metastatic prostate cancer: evidence to date. Cancer Manag Res 12:8105–8114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Risdon EN, Chau CH, Price DK, Sartor O, Figg WD (2021) PARP inhibitors and prostate cancer: to infinity and beyond BRCA. Oncologist 26(1):e115–e129

    Article  CAS  PubMed  Google Scholar 

  104. Teo MY, Rathkopf DE, Kantoff P (2019) Treatment of advanced prostate cancer. Annu Rev Med 70:479–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Madariaga A, Bowering V, Ahrari S, Oza AM, Lheureux S (2020) Manage wisely: poly (ADP-ribose) polymerase inhibitor (PARPi) treatment and adverse events. Int J Gynecol Cancer 30(7):903–915

    Article  PubMed  PubMed Central  Google Scholar 

  106. Leal TA, Sharifi MN, Chan N, Wesolowski R, Turk AA, Bruce JY et al (2022) A phase I study of talazoparib (BMN 673) combined with carboplatin and paclitaxel in patients with advanced solid tumors (NCI9782). Cancer Med 11(21):3969–3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ren N, Zhang L, Yu J, Guan S, Dai X, Sun L et al (2021) Efficacy and safety of PARP inhibitor combination therapy in recurrent ovarian cancer: a systematic review and meta-analysis. Front Oncol 11

    Article  PubMed  PubMed Central  Google Scholar 

  108. Agarwal N, Azad A, Shore ND, Carles J, Fay AP, Dunshee C et al (2022) Talazoparib plus enzalutamide in metastatic castration-resistant prostate cancer: TALAPRO-2 phase III study design. Future Oncol 18(4):425–436

    Article  CAS  PubMed  Google Scholar 

  109. Clarke N, Wiechno P, Alekseev B, Sala N, Jones R, Kocak I et al (2018) Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 19(7):975–986

    Article  CAS  PubMed  Google Scholar 

  110. Saad F, Efstathiou E, Attard G, Flaig TW, Franke F, Goodman OB Jr et al (2021) Apalutamide plus abiraterone acetate and prednisone versus placebo plus abiraterone and prednisone in metastatic, castration-resistant prostate cancer (ACIS): a randomised, placebo-controlled, double-blind, multinational, phase 3 study. Lancet Oncol 22(11):1541–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Patel A, Fong L (2018) Immunotherapy for prostate cancer: where do we go from here?-Part 1: prostate cancer vaccines. Oncology (Williston Park) 32(3):112–120

    PubMed  Google Scholar 

  112. Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L et al (2019) Application of PD-1 blockade in cancer immunotherapy. Comput Struct Biotechnol J 17:661–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sundram V, Chauhan SC, Jaggi M (2011) Emerging roles of protein kinase D1 in cancer. Mol Cancer Res 9(8):985–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liang Y, Su Y, Xu C, Zhang N, Liu D, Li G et al (2020) Protein kinase D1 phosphorylation of KAT7 enhances its protein stability and promotes replication licensing and cell proliferation. Cell Death Discov 6(1):89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Keenan TE, Burke KP, Van Allen EM (2019) Genomic correlates of response to immune checkpoint blockade. Nat Med 25(3):389–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design, and writing.

Corresponding author

Correspondence to Victor Chalfant.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the authors have read the manuscript and agreed to give their consent for the publication in cellular and molecular life science.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalfant, V., Riveros, C., Singh, P. et al. Potential role for protein kinase D inhibitors in prostate cancer. J Mol Med 101, 341–349 (2023). https://doi.org/10.1007/s00109-023-02298-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02298-4

Keywords

Navigation