Skip to main content

Advertisement

Log in

ATF3 in atherosclerosis: a controversial transcription factor

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Atherosclerosis, the pathophysiological basis of most malignant cardiovascular diseases, remains a global concern. Transcription factors play a key role in regulating cell function and disease progression in developmental signaling pathways involved in atherosclerosis. Activated transcription factor (ATF) 3 is an adaptive response gene in the ATF/cAMP response element binding (CREB) protein family that acts as a transcription suppressor or activator by forming homodimers or heterodimers with other ATF/CREB members. Appropriate ATF3 expression is vital for normal physiological cell function. Notably, ATF3 exhibits distinct roles in vascular endothelial cells, macrophages, and the liver, which will also be described in detail. This review provides a new perspective for atherosclerosis therapy by summarizing the mechanism of ATF3 in atherosclerosis, as well as the structure and pathophysiological properties of ATF3.

Key messages

• In endothelial cells, ATF3 overexpression aggravates oxidative stress and inflammation.

• In macrophages and liver cells, ATF3 can act as a negative regulator of inflammation and promote cholesterol metabolism.

• ATF3 can be used as a potential therapeutic factor in the treatment of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALK:

Activin receptor-like kinase

ATF:

Activated transcription factor

Ang II:

Angiotensin II

ACE2:

Angiotensin-converting enzyme 2

AS:

Atherosclerosis

bZip:

Basic region leucine zipper

cAMP:

Cyclic adenosine monophosphate

CDK:

Cyclin-dependent kinases

CHOP:

C/EBP homologous protein

ChREBP:

Carbohydrate response element binding protein

CREB:

CAMP response element binding

CREM:

CAMP response element modulator

Clec4e:

C-type Lectin receptor 4e

CYP8B1:

Cholesterol 12α -hydroxylase

EndMT:

Endothelial-mesenchymal transition

EC:

Endothelial cell

HAEC:

Human aortic endothelial cells

HBMECs:

Human brain microvascular endothelial cells

HCAECs:

Human coronary artery endothelial cells

HDL:

High-density lipoprotein

HCD:

High-cholesterol diet

Hif:

Hypoxia inducible factor

HO-1:

Heme oxygenase-1

HUVECs:

Human umbilical vein endothelial cells

IL-6:

Interleukin-6

Ire1:

Inositol-requiring transmembrane kinase/endonuclease 1

IRF7:

IFN regulatory factor 7

I/R:

Ischemia/Reperfusion

JNK:

C-Jun N-terminal kinase

LOX1R:

Lectin-like oxidized LDL receptor 1

MMP:

Matrix metalloproteinase

NO:

Nitric oxide

NRF2:

Nuclear factor erythroid 2-related factor 2

oxLDL:

Oxidized low-density lipoprotein

PI3K/AKT:

Phosphatidylinositol-4,5-bisphosphate 3-kinase/ protein kinase B

PLGF:

Placental growth factor

rECs:

Rabbit endothelial cells

Rock1/2:

Rho-associated, coiled-coil containing protein kinase 1 and 2

Scd1:

Stearoyl-CoA desaturase 1

SAPK:

Stress-activated protein kinase

SMC:

Smooth muscle cell

SR-B1:

Scavenger receptors B1

SUMO:

Small Ubiquitin-like Modifier

TNF-α:

Tumor necrosis factor-α

TGF-β:

Transforming growth factor-β

TGRL:

Triglyceride-rich lipoproteins

TLR:

Toll-like receptor

TL:

TGRL lipolysis products

TDB:

D-( +)-trehalose 6,6'-dibehenate

VSMCs:

Vascular smooth muscle cells

VEGF:

Vascular endothelial growth factor

References

  1. Jadhav K, Zhang Y (2017) Activating transcription factor 3 in immune response and metabolic regulation. Liver Res 1(2):96–102

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hai T, Hartman MG (2001) The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 273(1):1–11

    Article  PubMed  CAS  Google Scholar 

  3. Guo Z et al (2018) Insect Transcription Factors: A Landscape of Their Structures and Biological Functions in Drosophila and beyond. Int J Mol Sci 19(11)

  4. Liang G et al (1996) ATF3 gene. Genomic organization, promoter, and regulation. J Biol Chem 271(3):1695–701

  5. Baldi A et al (2011) Tumor suppressors and cell-cycle proteins in lung cancer. Patholog Res Int 2011:605042

    PubMed  PubMed Central  Google Scholar 

  6. Thompson MR, Xu D, Williams BR (2009) ATF3 transcription factor and its emerging roles in immunity and cancer. J Mol Med (Berl) 87(11):1053–1060

    Article  CAS  Google Scholar 

  7. Hunt D, Raivich G, Anderson PN (2012) Activating transcription factor 3 and the nervous system. Front Mol Neurosci 5:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hashimoto Y et al (2002) An alternatively spliced isoform of transcriptional repressor ATF3 and its induction by stress stimuli. Nucleic Acids Res 30(11):2398–2406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Shi Z et al (2020) Transcriptional factor ATF3 promotes liver fibrosis via activating hepatic stellate cells. Cell Death Dis 11(12):1066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wang J, Cao Y, Steiner DF (2003) Regulation of proglucagon transcription by activated transcription factor (ATF) 3 and a novel isoform, ATF3b, through the cAMP-response element/ATF site of the proglucagon gene promoter. J Biol Chem 278(35):32899–32904

    Article  PubMed  CAS  Google Scholar 

  11. Tanaka Y et al (2011) Systems analysis of ATF3 in stress response and cancer reveals opposing effects on pro-apoptotic genes in p53 pathway. PLoS ONE 6(10):e26848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhou H et al (2018) Activating transcription factor 3 in cardiovascular diseases: a potential therapeutic target. Basic Res Cardiol 113(5):37

    Article  PubMed  Google Scholar 

  13. Wang Y et al (2021) Ferroptosis signaling and regulators in atherosclerosis. Front Cell Dev Biol 9:809457

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bezsonov EE, Sobenin IA, Orekhov AN (2021) Immunopathology of atherosclerosis and related diseases: focus on molecular biology. Int J Mol Sci 22(8)

  15. Gimbrone Jr. MA, García-Cardeña G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118(4):620–36

  16. Mushenkova NV et al (2021) Recognition of oxidized lipids by macrophages and its role in atherosclerosis development. Biomedicines 9(8)

  17. Hartman MG et al (2004) Role for activating transcription factor 3 in stress-induced beta-cell apoptosis. Mol Cell Biol 24(13):5721–5732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Turchi L et al (2008) Hif-2alpha mediates UV-induced apoptosis through a novel ATF3-dependent death pathway. Cell Death Differ 15(9):1472–1480

    Article  PubMed  CAS  Google Scholar 

  19. Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340(2):115–126

    Article  PubMed  CAS  Google Scholar 

  20. Kawauchi J et al (2002) Transcriptional repressor activating transcription factor 3 protects human umbilical vein endothelial cells from tumor necrosis factor-alpha-induced apoptosis through down-regulation of p53 transcription. J Biol Chem 277(41):39025–39034

    Article  PubMed  CAS  Google Scholar 

  21. Zhao J et al (2016) The common stress responsive transcription factor ATF3 binds genomic sites enriched with p300 and H3K27ac for transcriptional regulation. BMC Genomics 17:335

    Article  PubMed  PubMed Central  Google Scholar 

  22. Salnikova D et al (2021) Mitochondrial dysfunction in vascular wall cells and its role in atherosclerosis. Int J Mol Sci 22(16)

  23. Nawa T et al (2002) Expression of transcriptional repressor ATF3/LRF1 in human atherosclerosis: colocalization and possible involvement in cell death of vascular endothelial cells. Atherosclerosis 161(2):281–291

    Article  PubMed  CAS  Google Scholar 

  24. Aung HH et al (2013) Induction of ATF3 gene network by triglyceride-rich lipoprotein lipolysis products increases vascular apoptosis and inflammation. Arterioscler Thromb Vasc Biol 33(9):2088–2096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Eiselein L et al (2015) TGRL lipolysis products induce stress protein ATF3 via the TGF-β receptor pathway in human aortic endothelial cells. PLoS ONE 10(12):e0145523

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mesquita APS et al (2022) Nitric oxide regulates adhesiveness, invasiveness, and migration of anoikis-resistant endothelial cells. Braz J Med Biol Res 55:e11612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ohukainen P et al (2015) Activating transcription factor 3 (ATF3) and its downstream inflammatory targets are dysregulated in human calcific aortic valve disease. Atherosclerosis 241(1)

  28. Cai Y et al (2000) Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH(2)-terminal kinase and promoter response element. Blood 96(6):2140–2148

    Article  PubMed  CAS  Google Scholar 

  29. Nyunt T et al (2019) Mitochondrial oxidative stress-induced transcript variants of ATF3 mediate lipotoxic brain microvascular injury. Free Radic Biol Med 143:25–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gilchrist M et al (2006) Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441(7090):173–178

    Article  PubMed  CAS  Google Scholar 

  31. Jaruvongvanich V, Poonsombudlert K, Ungprasert P (2019) Smoking and risk of microscopic colitis: a systematic review and meta-analysis. Inflamm Bowel Dis 25(4):672–678

    Article  PubMed  Google Scholar 

  32. Subramanyam RV (2011) Occurrence of recurrent aphthous stomatitis only on lining mucosa and its relationship to smoking–a possible hypothesis. Med Hypotheses 77(2):185–187

    Article  PubMed  CAS  Google Scholar 

  33. Perricone C et al (2016) Smoke and autoimmunity: the fire behind the disease. Autoimmun Rev 15(4):354–374

    Article  PubMed  CAS  Google Scholar 

  34. Teasdale JE et al (2017) Cigarette smoke extract profoundly suppresses TNFα-mediated proinflammatory gene expression through upregulation of ATF3 in human coronary artery endothelial cells. Sci Rep 7:39945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Qiu J et al (2022) The role and research progress of inhibitor of differentiation 1 in atherosclerosis. DNA Cell Biol 41(2):71–79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. De Nardo D et al (2014) High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol 15(2):152–160

    Article  PubMed  Google Scholar 

  37. Okamoto A, Iwamoto Y, Maru Y (2006) Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Mol Cell Biol 26(3):1087–1097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Krenning G et al (2016) Endothelial plasticity: shifting phenotypes through force feedback. Stem Cells Int 2016:9762959

    Article  PubMed  PubMed Central  Google Scholar 

  39. Good RB et al (2015) Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary arterial hypertension. Am J Pathol 185(7):1850–1858

    Article  PubMed  CAS  Google Scholar 

  40. Loeffler I, Wolf G (2015) Epithelial-to-mesenchymal transition in diabetic nephropathy: Fact or Fiction? Cells 4(4):631–652

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang XM et al (2021) Activating transcription factor 3 (ATF3) regulates cell growth, apoptosis, invasion and collagen synthesis in keloid fibroblast through transforming growth factor beta (TGF-beta)/SMAD signaling pathway. Bioengineered 12(1):117–126

    Article  PubMed  Google Scholar 

  42. Hong L et al (2020) Semaphorin 7A promotes endothelial to mesenchymal transition through ATF3 mediated TGF-beta2/Smad signaling. Cell Death Dis 11(8):695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Cannon RO 3rd (1998) Role of nitric oxide in cardiovascular disease: focus on the endothelium. Clin Chem 44(8 Pt 2):1809–1819

    Article  PubMed  CAS  Google Scholar 

  44. Paudel KR, Panth N, Kim DW (2016) Circulating endothelial microparticles: a key hallmark of atherosclerosis progression. Scientifica (Cairo) 2016:8514056

    Google Scholar 

  45. Chen HH, Wang DL (2004) Nitric oxide inhibits matrix metalloproteinase-2 expression via the induction of activating transcription factor 3 in endothelial cells. Mol Pharmacol 65(5):1130–1140

    Article  PubMed  CAS  Google Scholar 

  46. Zhang Z-B et al (2016) Activating transcription factor 3 SUMOylation is involved in angiotensin II-induced endothelial cell inflammation and dysfunction. J Mol Cell Cardiol 92:149–157

    Article  PubMed  CAS  Google Scholar 

  47. Du C et al (2021) The function of SUMOylation and its critical roles in cardiovascular diseases and potential clinical implications. Int J Mol Sci 22(19)

  48. Rawlings N et al (2019) Protective role of the deSUMOylating enzyme SENP3 in myocardial ischemia-reperfusion injury. PLoS ONE 14(4):e0213331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Chang E, Abe JI (2016) Kinase-SUMO networks in diabetes-mediated cardiovascular disease. Metabolism 65(5):623–633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhou WP et al (2015) RNA interference of myocyte enhancer factor 2A accelerates atherosclerosis in apolipoprotein E-deficient mice. PLoS ONE 10(3):e0121823

    Article  PubMed  PubMed Central  Google Scholar 

  51. Qin W et al (2021) Activating transcription factor 3 is a potential target and a new biomarker for the prognosis of atherosclerosis. Hum Cell 34(1):49–59

    Article  PubMed  CAS  Google Scholar 

  52. Didichenko SA et al (2016) Enhanced HDL functionality in small HDL species produced upon remodeling of HDL by reconstituted HDL, CSL112: effects on cholesterol efflux, anti-inflammatory and antioxidative activity. Circ Res 119(6):751–763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Gold ES et al (2012) ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation. J Exp Med 209(4):807–817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Nus M et al (2017) Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. Nat Med 23(5):601–610

    Article  PubMed  CAS  Google Scholar 

  55. Smith CK et al (2017) Lupus high-density lipoprotein induces proinflammatory responses in macrophages by binding lectin-like oxidised low-density lipoprotein receptor 1 and failing to promote activating transcription factor 3 activity. Ann Rheum Dis 76(3):602–611

    Article  PubMed  CAS  Google Scholar 

  56. Clément M et al (2016) Necrotic cell sensor Clec4e promotes a proatherogenic macrophage phenotype through activation of the unfolded protein response. Circulation 134(14):1039–1051

    Article  PubMed  Google Scholar 

  57. Xu Y et al (2021) Hepatocyte ATF3 protects against atherosclerosis by regulating HDL and bile acid metabolism. Nat Metab 3(1):59–74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hosseini-Fard SR et al (2018) ATF3 and EGR2 gene expression levels in sdLDL-treated macrophages of patients with coronary artery stenosis. LaboratoriumsMedizin 42(1–2):23–29

    Article  CAS  Google Scholar 

  59. Yap C et al (2021) Six shades of vascular smooth muscle cells illuminated by KLF4 (Krüppel-Like Factor 4). Arterioscler Thromb Vasc Biol 41(11):2693–2707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Casili G et al (2020) The inhibition of prolyl oligopeptidase as new target to counteract chronic venous insufficiency: findings in a mouse model. Biomedicines 8(12)

  61. Yang X et al (2021) Targeting the epigenome in in-stent restenosis: from mechanisms to therapy. Mol Ther Nucleic Acids 23:1136–1160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wang Y et al (2021) Dynamic changes in chromatin accessibility are associated with the atherogenic transitioning of vascular smooth muscle cells. Cardiovasc Res

  63. Huang L et al (2014) Interferon regulatory factor 7 protects against vascular smooth muscle cell proliferation and neointima formation. J Am Heart Assoc 3(5):e001309

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chen WJ et al (2020) CREB/ATF3 signaling mediates indoxyl sulfate-induced vascular smooth muscle cell proliferation and neointimal formation in uremia. Atherosclerosis 315:43–54

    Article  PubMed  CAS  Google Scholar 

  65. Liu X et al (2020) Mechanical stretch induces smooth muscle cell dysfunction by regulating ACE2 via P38/ATF3 and post-transcriptional regulation by miR-421. Front Physiol 11:540591

    Article  PubMed  Google Scholar 

  66. Choe N et al (2020) miR-27a-3p targets ATF3 to reduce calcium deposition in vascular smooth muscle cells. Mol Ther Nucleic Acids 22:627–639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Chen NX et al (2011) Activation of arterial matrix metalloproteinases leads to vascular calcification in chronic kidney disease. Am J Nephrol 34(3):211–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Hecht E et al (2016) The matrix metalloproteinases 2 and 9 initiate uraemic vascular calcifications. Nephrol Dial Transplant 31(5):789–797

    Article  PubMed  CAS  Google Scholar 

  69. Lv D et al (2011) Activating transcription factor 3 regulates survivability and migration of vascular smooth muscle cells. IUBMB Life 63(1):62–69

    Article  PubMed  CAS  Google Scholar 

  70. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Kim HB et al (2006) NFATc4 and ATF3 negatively regulate adiponectin gene expression in 3T3-L1 adipocytes. Diabetes 55(5):1342–1352

    Article  PubMed  CAS  Google Scholar 

  72. Park HJ et al (2010) ATF3 negatively regulates adiponectin receptor 1 expression. Biochem Biophys Res Commun 400(1):72–77

    Article  PubMed  CAS  Google Scholar 

  73. Koh IU et al (2010) AdipoR2 is transcriptionally regulated by ER stress-inducible ATF3 in HepG2 human hepatocyte cells. Febs j 277(10):2304–2317

    Article  PubMed  CAS  Google Scholar 

  74. Tsai SH et al (2013) Knockdown of RyR3 enhances adiponectin expression through an atf3-dependent pathway. Endocrinology 154(3):1117–1129

    Article  PubMed  CAS  Google Scholar 

  75. Jang MK, Son Y, Jung MH (2013) ATF3 plays a role in adipocyte hypoxia-mediated mitochondria dysfunction in obesity. Biochem Biophys Res Commun 431(3):421–427

    Article  PubMed  CAS  Google Scholar 

  76. Cheng CF et al (2019) Adipocyte browning and resistance to obesity in mice is induced by expression of ATF3. Commun Biol 2:389

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jang MK et al (2012) ATF3 inhibits adipocyte differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 421(1):38–43

    Article  PubMed  CAS  Google Scholar 

  78. Labzin LI et al (2015) ATF3 Is a key regulator of macrophage IFN responses. J Immunol 195(9):4446–4455

    Article  PubMed  CAS  Google Scholar 

  79. Luo H et al (2015) ATF3 inhibits Tenascin-C-induced foam cell formation in LPS-stimulated THP-1 macrophages by suppressing TLR-4. J Atheroscler Thromb 22(11):1214–1223

    Article  PubMed  CAS  Google Scholar 

  80. Lai PF et al (2013) ATF3 Protects against LPS-induced inflammation in mice via inhibiting HMGB1 expression. Evid Based Complement Alternat Med 2013:716481

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang Y, Ding WX, Li T (2018) Cholesterol and bile acid-mediated regulation of autophagy in fatty liver diseases and atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 1863(7):726–733

    Article  PubMed  CAS  Google Scholar 

  82. Xu Y et al (2021) Hepatocytic activating transcription factor 3 protects against steatohepatitis via hepatocyte nuclear factor 4α. Diabetes 70(11):2506–2517

    Article  PubMed  CAS  Google Scholar 

  83. Zhu Q et al (2018) Loss of ATF3 exacerbates liver damage through the activation of mTOR/p70S6K/ HIF-1α signaling pathway in liver inflammatory injury. Cell Death Dis 9(9):910

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rao J et al (2015) ATF3-mediated NRF2/HO-1 signaling regulates TLR4 innate immune responses in mouse liver ischemia/reperfusion injury. Am J Transplant 15(1):76–87

    Article  PubMed  CAS  Google Scholar 

  85. Li Y et al (2022) Silencing ATF3 might delay TBHP-induced intervertebral disc degeneration by repressing NPC ferroptosis, apoptosis, and ECM degradation. Oxid Med Cell Longev 2022:4235126

    PubMed  PubMed Central  Google Scholar 

  86. Lan YF et al (2012) MicroRNA-494 reduces ATF3 expression and promotes AKI. J Am Soc Nephrol 23(12):2012–2023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Liu YP et al (2022) Role of posttranslational modifications of proteins in cardiovascular disease. Oxid Med Cell Longev 2022:3137329

    PubMed  PubMed Central  Google Scholar 

  88. Cui Z et al (2014) Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond. J Mol Cell Cardiol 71:32–42

    Article  PubMed  CAS  Google Scholar 

  89. Li HF et al (2010) ATF3-mediated epigenetic regulation protects against acute kidney injury. J Am Soc Nephrol 21(6):1003–1013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Willemsen N et al (2022) Proteasome dysfunction disrupts adipogenesis and induces inflammation via ATF3. Mol Metab 62:101518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Hackl C et al (2010) Activating transcription factor-3 (ATF3) functions as a tumor suppressor in colon cancer and is up-regulated upon heat-shock protein 90 (Hsp90) inhibition. BMC Cancer 10:668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Xie JJ et al (2014) ATF3 functions as a novel tumor suppressor with prognostic significance in esophageal squamous cell carcinoma. Oncotarget 5(18):8569–8582

    Article  PubMed  PubMed Central  Google Scholar 

  93. Yuan X et al (2013) ATF3 suppresses metastasis of bladder cancer by regulating gelsolin-mediated remodeling of the actin cytoskeleton. Cancer Res 73(12):3625–3637

    Article  PubMed  CAS  Google Scholar 

  94. Wei S et al (2014) The activating transcription factor 3 protein suppresses the oncogenic function of mutant p53 proteins. J Biol Chem 289(13):8947–8959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Wang Z et al (2015) Loss of ATF3 promotes Akt activation and prostate cancer development in a Pten knockout mouse model. Oncogene 34(38):4975–4984

    Article  PubMed  CAS  Google Scholar 

  96. Bar J et al (2016) Induction of activating transcription factor 3 is associated with cisplatin responsiveness in non-small cell lung carcinoma cells. Neoplasia 18(9):525–535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Yan C et al (2005) Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. Mol Cancer Ther 4(2):233–241

    Article  PubMed  CAS  Google Scholar 

  98. Sooraj D et al (2016) Activating transcription factor 3 expression as a marker of response to the histone deacetylase inhibitor pracinostat. Mol Cancer Ther 15(7):1726–1739

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the Ningbo Natural Science Foundation of China (2019A610341).

Author information

Authors and Affiliations

Authors

Contributions

BYW and JQZ designed the manuscript. BYW wrote the manuscript. JQ, BYL, and XYS revised the manuscript. JFL and FY revised the tables. JHL and XY revised the figures. All authors approved the manuscript for publication.

Corresponding author

Correspondence to Jianqing Zhou.

Ethics declarations

Ethics approval and data availability

This review is not applied.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Yang, X., Sun, X. et al. ATF3 in atherosclerosis: a controversial transcription factor. J Mol Med 100, 1557–1568 (2022). https://doi.org/10.1007/s00109-022-02263-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02263-7

Keywords

Navigation