Skip to main content

Advertisement

Log in

The multiple functions of PrPC in physiological, cancer, and neurodegenerative contexts

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Cellular prion protein (PrPC) is a highly conserved glycoprotein, present both anchored in the cell membrane and soluble in the extracellular medium. It has a diversity of ligands and is variably expressed in numerous tissues and cell subtypes, most notably in the central nervous system (CNS). Its importance has been brought to light over the years both under physiological conditions, such as embryogenesis and immune system homeostasis, and in pathologies, such as cancer and neurodegenerative diseases. During development, PrPC plays an important role in CNS, participating in axonal growth and guidance and differentiation of glial cells, but also in other organs such as the heart, lung, and digestive system. In diseases, PrPC has been related to several types of tumors, modulating cancer stem cells, enhancing malignant properties, and inducing drug resistance. Also, in non-neoplastic diseases, such as Alzheimer’s and Parkinson’s diseases, PrPC seems to alter the dynamics of neurotoxic aggregate formation and, consequently, the progression of the disease. In this review, we explore in detail the multiple functions of this protein, which proved to be relevant for understanding the dynamics of organism homeostasis, as well as a promising target in the treatment of both neoplastic and degenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Linden R, Cordeiro Y, Lima LMTR (2012) Allosteric function and dysfunction of the prion protein. Cell Mol Life Sci 69:1105–1124. https://doi.org/10.1007/s00018-011-0847-7

    Article  CAS  PubMed  Google Scholar 

  2. Castle AR, Gill AC (2017) Physiological functions of the cellular prion protein. Front Mol Biosci 4:1–25. https://doi.org/10.3389/fmolb.2017.00019

    Article  CAS  Google Scholar 

  3. Falker C, Hartmann A, Guett I et al (2016) Exosomal cellular prion protein drives fibrillization of amyloid beta and counteracts amyloid beta-mediated neurotoxicity. J Neurochem 137:88–100. https://doi.org/10.1111/jnc.13514

    Article  CAS  PubMed  Google Scholar 

  4. Leblanc P, Arellano-Anaya ZE, Bernard E et al (2017) Isolation of exosomes and microvesicles from cell culture systems to study prion transmission. In: Methods in Mol Biol 153–176

  5. Adle-Biassette H, Verney C, Peoc’h K, et al (2006) Immunohistochemical expression of prion protein (PrPC) in the human forebrain during development. J Neuropathol Exp Neurol 65:698–706. https://doi.org/10.1097/01.jnen.0000228137.10531.72

    Article  CAS  PubMed  Google Scholar 

  6. Linden R, Martins VR, Prado MAM et al (2008) Physiology of the prion protein. Physiol Rev 88:673–728. https://doi.org/10.1152/physrev.00007.2007

    Article  CAS  PubMed  Google Scholar 

  7. Moser M, Colello RJ, Pott U, Oesch B (1995) Developmental expression of the prion protein gene in glial cells. Neuron 14:509–517. https://doi.org/10.1016/0896-6273(95)90307-0

    Article  CAS  PubMed  Google Scholar 

  8. Watts JC, Bourkas MEC, Arshad H (2018) The function of the cellular prion protein in health and disease. Acta Neuropathol 135:159–178. https://doi.org/10.1007/s00401-017-1790-y

    Article  CAS  PubMed  Google Scholar 

  9. Arantes C, Nomizo R, Lopes MH et al (2009) Prion protein and its ligand stress inducible protein 1 regulate astrocyte development. Glia 57:1439–1449. https://doi.org/10.1002/glia.20861

    Article  PubMed  Google Scholar 

  10. Hartmann CA, Martins VR, Lima FRS (2013) High levels of cellular prion protein improve astrocyte development. FEBS Lett 587:238–244. https://doi.org/10.1016/j.febslet.2012.11.032

    Article  CAS  PubMed  Google Scholar 

  11. Lima FRS, Arantes CP, Muras AG et al (2007) Cellular prion protein expression in astrocytes modulates neuronal survival and differentiation. J Neurochem 103:2164–2176. https://doi.org/10.1111/j.1471-4159.2007.04904.x

    Article  CAS  PubMed  Google Scholar 

  12. Chadi S, Young R, Le Guillou S et al (2010) Brain transcriptional stability upon prion protein-encoding gene invalidation in zygotic or adult mouse. BMC Genomics 11:448. https://doi.org/10.1186/1471-2164-11-448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Halliez S, Passet B, Martin-Lannerée S, et al (2014) To develop with or without the prion protein. Front Cell Dev Biol 2:1–10. https://doi.org/10.3389/fcell.2014.00058

    Article  Google Scholar 

  14. Weissmann C, Flechsig E (2003) PrP knock-out and PrP transgenic mice in prion research. Br Med Bull 66:43–60. https://doi.org/10.1093/bmb/66.1.43

    Article  CAS  PubMed  Google Scholar 

  15. Mallucci GR (2002) Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 21:202–210. https://doi.org/10.1093/emboj/21.3.202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manson JC, Clarke AR, Hooper ML et al (1994) 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 8:121–127. https://doi.org/10.1007/BF02780662

    Article  CAS  PubMed  Google Scholar 

  17. Richt JA, Kasinathan P, Hamir AN et al (2007) Production of cattle lacking prion protein. Nat Biotechnol 25:132–138. https://doi.org/10.1038/nbt1271

    Article  CAS  PubMed  Google Scholar 

  18. White MD, Farmer M, Mirabile I et al (2008) Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc Natl Acad Sci U S A 105:10238–10243. https://doi.org/10.1073/pnas.0802759105

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yu G, Chen J, Xu Y et al (2009) Generation of goats lacking prion protein. Mol Reprod Dev 76:3

    Article  CAS  Google Scholar 

  20. Büeler H, Fischer M, Lang Y et al (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356:577–582. https://doi.org/10.1038/356577a0

    Article  PubMed  Google Scholar 

  21. Gerlai R (1996) Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci 19:177–181. https://doi.org/10.1016/S0166-2236(96)20020-7

    Article  CAS  PubMed  Google Scholar 

  22. Nuvolone M, Hermann M, Sorce S et al (2016) Strictly co-isogenic C57BL/6J-Prnp-/- mice: a rigorous resource for prion science. J Exp Med 213:313–327. https://doi.org/10.1084/jem.20151610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Norrby E (2011) Prions and protein-folding diseases. J Intern Med 270:1–14

    Article  CAS  Google Scholar 

  24. Prusiner SB, Scott MR, DeArmond SJ, Cohen FE (1998) Prion protein biology. Cell 93:337–348

    Article  CAS  Google Scholar 

  25. Cox TO, Gunther EC, Brody AH et al (2019) Anti-PrPC antibody rescues cognition and synapses in transgenic alzheimer mice. Ann Clin Transl Neurol 6:554–574. https://doi.org/10.1002/acn3.730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Linden R (2017) The biological function of the prion protein: a cell surface scaffold of signaling modules. Front Mol Neurosci 10:1–19. https://doi.org/10.3389/fnmol.2017.00077

    Article  CAS  Google Scholar 

  27. Pan Y, Zhao L, Liang J et al (2006) Cellular prion protein promotes invasion and metastasis of gastric cancer. FASEB J 20:1886–1888. https://doi.org/10.1096/fj.06-6138fje

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Yu S, Huang D et al (2016) Cellular prion protein mediates pancreatic cancer cell survival and invasion through association with and enhanced signaling of Notch1. Am J Pathol 186:2945–2956. https://doi.org/10.1016/j.ajpath.2016.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang X, Zhang Y, Zhang L et al (2014) Prion protein and cancers. Acta Biochim Biophys Sin (Shanghai) 46:431–440. https://doi.org/10.1093/abbs/gmu019

    Article  CAS  Google Scholar 

  30. Zhou L, Shang Y, Liu C et al (2014) Overexpression of PrPc, combined with MGr1-Ag/37LRP, is predictive of poor prognosis in gastric cancer. Int J Cancer 135:2329–2337. https://doi.org/10.1002/ijc.28883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cashman NR, Loertscher R, Nalbantoglu J et al (1990) Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell 61:185–192. https://doi.org/10.1016/0092-8674(90)90225-4

    Article  CAS  PubMed  Google Scholar 

  32. Isaacs JD, Jackson GS, Altmann DM (2006) The role of the cellular prion protein in the immune system. Clin Exp Immunol 146:1–8. https://doi.org/10.1111/j.1365-2249.2006.03194.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Esiri MM, Carter J, Ironside JW (2000) Prion protein immunoreactivity in brain samples from an unselected autopsy population: findings in 200 consecutive cases. Neuropathol Appl Neurobiol 26:273–284. https://doi.org/10.1046/j.1365-2990.2000.00239.x

    Article  CAS  PubMed  Google Scholar 

  34. Harris DA, Lele P, Snider WD (1993) Localization of the mRNA for a chicken prion protein by in situ hybridization. Proc Natl Acad Sci U S A 90:4309–4313. https://doi.org/10.1073/pnas.90.9.4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McLennan NF, Rennison KA, Bell JE, Ironside JW (2001) In situ hybridization analysis of PrP mRNA in human CNS tissues. Neuropathol Appl Neurobiol 27:373–383. https://doi.org/10.1046/j.0305-1846.2001.00343.x

    Article  CAS  PubMed  Google Scholar 

  36. Tremblay P, Bouzamondo-Bernstein E, Heinrich C et al (2007) Developmental expression of PrP in the post-implantation embryo. Brain Res 1139:60–67. https://doi.org/10.1016/j.brainres.2006.12.055

    Article  CAS  PubMed  Google Scholar 

  37. Bendheim PE, Brown HR, Rudelli RD et al (1992) Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 42:149–156. https://doi.org/10.1212/wnl.42.1.149

    Article  CAS  PubMed  Google Scholar 

  38. Manson J, West JD, Thomson V et al (1992) The prion protein gene: a role in mouse embryogenesis? Development 115:117–122. https://doi.org/10.1242/dev.115.1.117

    Article  CAS  PubMed  Google Scholar 

  39. Peralta OA, Huckle WR, Eyestone WH (2011) Expression and knockdown of cellular prion protein (PrPC) in differentiating mouse embryonic stem cells. Differentiation 81:68–77. https://doi.org/10.1016/j.diff.2010.09.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Steele AD, Emsley JG, Özdinler PH et al (2006) Prion protein (PrP c ) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc Natl Acad Sci 103:3416–3421. https://doi.org/10.1073/pnas.0511290103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Collinge J, Whittington MA, Sidle KCL et al (1994) Prion protein is necessary for normal synaptic function. Nature 370:295–297. https://doi.org/10.1038/370295a0

    Article  CAS  PubMed  Google Scholar 

  42. Miele G, Jeffrey M, Turnbull D et al (2002) Ablation of cellular prion protein expression affects mitochondrial numbers and morphology. Biochem Biophys Res Commun 291:372–377. https://doi.org/10.1006/bbrc.2002.6460

    Article  CAS  PubMed  Google Scholar 

  43. Málaga-Trillo E, Solis GP, Schrock Y et al (2009) Regulation of embryonic cell adhesion by the prion protein. PLoS Biol 7:0576–0590. https://doi.org/10.1371/journal.pbio.1000055

    Article  CAS  Google Scholar 

  44. Amin L, Nguyen XTA, Rolle IG et al (2016) Characterization of prion protein function by focal neurite stimulation. J Cell Sci 129:3878–3891. https://doi.org/10.1242/jcs.183137

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen XTA, Tran TH, Cojoc D, Legname G (2019) Copper binding regulates cellular prion protein function. Mol Neurobiol 56:6121–6133. https://doi.org/10.1007/s12035-019-1510-9

    Article  CAS  PubMed  Google Scholar 

  46. Bodrikov V, Solis GP, Stuermer CAO (2011) Prion protein promotes growth cone development through reggie/flotillin-dependent N-cadherin trafficking. J Neurosci 31:18013–18025. https://doi.org/10.1523/JNEUROSCI.4729-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miyazawa K, Emmerling K, Manuelidis L (2010) Proliferative arrest of neural cells induces prion protein synthesis, nanotube formation, and cell-to-cell contacts. J Cell Biochem 111:239–247. https://doi.org/10.1002/jcb.22723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Santuccione A, Sytnyk V, Leshchyns’ka I, Schachner M, (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol 169:341–354. https://doi.org/10.1083/jcb.200409127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee YJ, Baskakov IV (2013) The cellular form of the prion protein is involved in controlling cell cycle dynamics, self-renewal, and the fate of human embryonic stem cell differentiation. J Neurochem 124:310–322. https://doi.org/10.1111/j.1471-4159.2012.07913.x

    Article  CAS  PubMed  Google Scholar 

  50. Prodromidou K, Papastefanaki F, Sklaviadis T, Matsas R (2014) Functional cross-talk between the cellular prion protein and the neural cell adhesion molecule is critical for neuronal differentiation of neural stem/precursor cells. Stem Cells 32:1674–1687. https://doi.org/10.1002/stem.1663

    Article  CAS  PubMed  Google Scholar 

  51. Mehrabian M, Brethour D, Wang H et al (2015) The prion protein controls polysialylation of neural cell adhesion molecule 1 during cellular morphogenesis. PLoS ONE 10:e0133741. https://doi.org/10.1371/journal.pone.0133741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Halliez S, Martin-Lannerée S, Passet B et al (2015) Prion protein localizes at the ciliary base during neural and cardiovascular development and its depletion affects α-tubulin post-translational modifications. Sci Rep 5:17146. https://doi.org/10.1038/srep17146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Santos TG, Silva IG, B C-S, et al (2011) Enhanced neural progenitor/stem cells self-renewal via the interaction of stress-inducible protein 1 with the prion protein. Stem Cells 31:2136–2148. https://doi.org/10.1002/May

    Article  Google Scholar 

  54. Skedsmo FS, Malachin G, Våge DI et al (2020) Demyelinating polyneuropathy in goats lacking prion protein. FASEB J 34:2359–2375. https://doi.org/10.1096/fj.201902588R

    Article  CAS  PubMed  Google Scholar 

  55. Guénard V, Montag D, Schachner M, Martini R (1996) Onion bulb cells in mice deficient for myelin genes share molecular properties with immature, differentiated non-myelinating, and denervated Schwann cells. Glia 18:27–38. https://doi.org/10.1002/(SICI)1098-1136(199609)18:1%3c27::AID-GLIA3%3e3.0.CO;2-0

    Article  PubMed  Google Scholar 

  56. Kretzschmar HA, Prusiner SB, Stowring LE, DeArmond SJ (1986) Scrapie prion proteins are synthesized in neurons. Am J Pathol 122:1–5

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bribián A, Fontana X, Llorens F et al (2012) Role of the cellular prion protein in oligodendrocyte precursor cell proliferation and differentiation in the developing and adult mouse CNS. PLoS ONE 7:e33872. https://doi.org/10.1371/journal.pone.0033872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brown DR, Besinger A, Herms JW, Kretzschmar HA (1998) Microglial expression of the prion protein. NeuroReport 9:1425–1429. https://doi.org/10.1097/00001756-199805110-00032

    Article  CAS  PubMed  Google Scholar 

  59. Garcia-Abreu J, Cavalcante LA, Neto VM (1995) Differential patterns of laminin expression in lateral and medial midbrain glia. NeuroReport 6:761–764. https://doi.org/10.1097/00001756-199503270-00014

    Article  CAS  PubMed  Google Scholar 

  60. Aguzzi A (2003) Prions and the immune system: a trip through intestine, spleen, lymph nodes and nerves. ATTI Della Accad Naz Dei Lincei Rend Lincei Sci Fis E Nat 14:293–337. https://doi.org/10.1007/BF02904488

    Article  Google Scholar 

  61. Burthem J, Urban B, Pain A, Roberts DJ (2001) The normal cellular prion protein is strongly expressed by myeloid dendritic cells. Blood 98:3733–3738. https://doi.org/10.1182/blood.V98.13.3733

    Article  CAS  PubMed  Google Scholar 

  62. Salvesen Ø, Tatzelt J, Tranulis MA (2019) The prion protein in neuroimmune crosstalk. Neurochem Int 130:104335. https://doi.org/10.1016/j.neuint.2018.11.010

    Article  CAS  PubMed  Google Scholar 

  63. Kim S, Han S, Lee YE et al (2016) Prion protein-deficient mice exhibit decreased CD4 T and LTi cell numbers and impaired spleen structure. Immunobiology 221:94–102. https://doi.org/10.1016/j.imbio.2015.07.017

    Article  CAS  PubMed  Google Scholar 

  64. Dodelet VC, Cashman NR (1998) Prion protein expression in human leukocyte differentiation. Blood 91:1556–1561. https://doi.org/10.1182/blood.v91.5.1556

    Article  CAS  PubMed  Google Scholar 

  65. Dürig J, Giese A, Schulz-Schaeffer W et al (2000) Differential constitutive and activation-dependent expression of prion protein in human peripheral blood leucocytes. Br J Haematol 108:488–495. https://doi.org/10.1046/j.1365-2141.2000.01881.x

    Article  PubMed  Google Scholar 

  66. Zhang CC, Steele AD, Lindquist S, Lodish HF (2006) Prion protein is expressed on long-term repopulating hematopoietic stem cells and its important for their self-renewal. Proc Natl Acad Sci U S A 103:2184–2189. https://doi.org/10.1073/pnas.0510577103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Siberchicot C, Gault N, Déchamps N et al (2020) Prion protein deficiency impairs hematopoietic stem cell determination and sensitizes myeloid progenitors to irradiation. Haematologica 105:1216–1222. https://doi.org/10.3324/HAEMATOL.2018.205716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jeon J-W, Park B-C, Jung J-G et al (2013) The soluble form of the cellular prion protein enhances phagocytic activity and cytokine production by human monocytes via activation of ERK and NF-κB. Immune Netw 13:148. https://doi.org/10.4110/in.2013.13.4.148

    Article  PubMed  PubMed Central  Google Scholar 

  69. Seong YJ, Sung PS, Jang YS et al (2015) Activation of human natural killer cells by the soluble form of cellular prion protein. Biochem Biophys Res Commun 464:512–518. https://doi.org/10.1016/j.bbrc.2015.06.172

    Article  CAS  PubMed  Google Scholar 

  70. Richardson DD, Tol S, Valle-Encinas E et al (2015) The prion protein inhibits monocytic cell migration by stimulating β1 integrin adhesion and uropod formation. J Cell Sci 128:3018–3029. https://doi.org/10.1242/jcs.165365

    Article  CAS  PubMed  Google Scholar 

  71. Martínez del Hoyo G, López-Bravo M, Metharom P et al (2006) Prion protein expression by mouse dendritic cells is restricted to the nonplasmacytoid subsets and correlates with the maturation state. J Immunol 177:6137–6142. https://doi.org/10.4049/jimmunol.177.9.6137

    Article  PubMed  Google Scholar 

  72. Isaacs JD, Garden OA, Kaur G et al (2008) The cellular prion protein is preferentially expressed by CD4+ CD25+ Foxp3+ regulatory T cells. Immunology 125:313–319. https://doi.org/10.1111/j.1365-2567.2008.02853.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hu W, Nessler S, Hemmer B et al (2010) Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling. Brain 133:375–388. https://doi.org/10.1093/brain/awp298

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gregoire S, Logre C, Metharom P et al (2004) Identification of two immunogenic domains of the prion protein-PrP-which activate class II-restricted T cells and elicit antibody responses against the native molecule. J Leukoc Biol 76:125–134. https://doi.org/10.1189/jlb.1203656

    Article  CAS  PubMed  Google Scholar 

  75. Benestad SL, Austbø L, Tranulis MA et al (2012) Healthy goats naturally devoid of prion protein. Vet Res 43:87. https://doi.org/10.1186/1297-9716-43-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Salvesen Ø, Espenes A, Reiten MR et al (2020) Goats naturally devoid of PrPC are resistant to scrapie. Vet Res 51:1. https://doi.org/10.1186/s13567-019-0731-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Salvesen RMR, Espenes A et al (2017) LPS-induced systemic inflammation reveals an immunomodulatory role for the prion protein at the blood-brain interface. J Neuroinflammation 14:1–12. https://doi.org/10.1186/s12974-017-0879-5

    Article  CAS  Google Scholar 

  78. Malachin G, Reiten MR, Salvesen Ø et al (2017) Loss of prion protein induces a primed state of type I interferon-responsive genes. PLoS ONE 12:1–16. https://doi.org/10.1371/journal.pone.0179881

    Article  CAS  Google Scholar 

  79. de Almeida CJG, Chiarini LB, da Silva JP et al (2005) The cellular prion protein modulates phagocytosis and inflammatory response. J Leukoc Biol 77:238–246. https://doi.org/10.1189/jlb.1103531

    Article  CAS  PubMed  Google Scholar 

  80. Wang M, Zhao D, Yang Y et al (2014) The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages. PLoS ONE 9:e102785. https://doi.org/10.1371/journal.pone.0102785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Onodera, (2010) Enhancement of phagocytotic activity by prion protein in PrP-deficient macrophage cells. Int J Mol Med 26:527–532. https://doi.org/10.3892/ijmm_00000495

    Article  CAS  Google Scholar 

  82. Ding T, Zhou X, Kouadir M et al (2013) Cellular prion protein participates in the regulation of inflammatory response and apoptosis in BV2 microglia during infection with Mycobacterium bovis. J Mol Neurosci 51:118–126. https://doi.org/10.1007/s12031-013-9962-2

    Article  CAS  PubMed  Google Scholar 

  83. Shi F, Yang L, Kouadir M et al (2013) Prion protein participates in the regulation of classical and alternative activation of BV2 microglia. J Neurochem 124:168–174. https://doi.org/10.1111/jnc.12053

    Article  CAS  PubMed  Google Scholar 

  84. Pinheiro LP, Linden R, Mariante RM (2015) Activation and function of murine primary microglia in the absence of the prion protein. J Neuroimmunol 286:25–32. https://doi.org/10.1016/j.jneuroim.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  85. Tsutsui S, Hahn JN, Johnson TA et al (2008) Absence of the cellular prion protein exacerbates and prolongs neuroinflammation in experimental autoimmune encephalomyelitis. Am J Pathol 173:1029–1041. https://doi.org/10.2353/ajpath.2008.071062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gourdain P, Ballerini C, Nicot AB, Carnaud C (2012) Exacerbation of experimental autoimmune encephalomyelitis in prion protein (PrPc)-null mice: evidence for a critical role of the central nervous system. J Neuroinflammation 9:25. https://doi.org/10.1186/1742-2094-9-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Aucouturier P, Carp RI, Carnaud C, Wisniewski T (2000) Prion diseases and the immune system. Clin Immunol 96:79–85

    Article  CAS  Google Scholar 

  88. Mabbott NA, Alibhai JD, Manson J (2018) The role of the immune system in prion infection. In: Handbook of Clinical Neurology. Elsevier B.V., pp 85–107

  89. Mabbott NA, Bradford BM, Pal R et al (2020) The effects of immune system modulation on prion disease susceptibility and pathogenesis. Int J Mol Sci 21:1–39

    Article  Google Scholar 

  90. Peggion C, Stella R, Lorenzon P et al (2020) Microglia in prion diseases: angels or demons? Int J Mol Sci 21:1–16

    Article  Google Scholar 

  91. Eklund CM, Kennedy RC, Hadlow WJ (1967) Pathogenesis of scrapie virus infection in the mouse. J Infect Dis 117:15–22. https://doi.org/10.1093/infdis/117.1.15

    Article  CAS  PubMed  Google Scholar 

  92. Keulen LJM, Schreuder BEC, Vromans MEW et al (2000) Pathogenesis of natural scrapie in sheep. Prion Diseases. Springer Vienna, Vienna, pp 57–71

    Google Scholar 

  93. Sigurdson CJ, Williams ES, Miller MW et al (1999) Oral transmission and early lymphoid tropism of chronic wasting disease PrPres in mule deer fawns (Odocoileus hemionus ). J Gen Virol 80:2757–2764. https://doi.org/10.1099/0022-1317-80-10-2757

    Article  CAS  PubMed  Google Scholar 

  94. Dickinson AG, Meikle VMH, Fraser H (1969) Genetical control of the concentration of ME7 scrapie agent in the brain of mice. J Comp Pathol 79:15–22. https://doi.org/10.1016/0021-9975(69)90021-8

    Article  CAS  PubMed  Google Scholar 

  95. Fraser H, Dickinson AG (1970) Pathogenesis of scrapie in the mouse: the role of the spleen. Nature 226:462–463. https://doi.org/10.1038/226462a0

    Article  CAS  PubMed  Google Scholar 

  96. Béringue V, Tixador P, Andréoletti O et al (2020) Host prion protein expression levels impact prion tropism for the spleen. PLOS Pathog 16:e1008283. https://doi.org/10.1371/journal.ppat.1008283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McCulloch L, Brown KL, Bradford BM et al (2011) Follicular dendritic cell-specific prion protein (PrPc) expression alone is sufficient to sustain prion infection in the spleen. PLoS Pathog 7:e1002402. https://doi.org/10.1371/journal.ppat.1002402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brandner S, Klein MA, Aguzzi A (1999) A crucial role for B cells in neuroinvasive scrapie. Transfus Clin Biol 6:17–23. https://doi.org/10.1016/S1246-7820(99)80007-X

    Article  CAS  PubMed  Google Scholar 

  99. Kujala P, Raymond CR, Romeijn M et al (2011) Prion uptake in the gut: identification of the first uptake and replication sites. PLoS Pathog 7:e1002449. https://doi.org/10.1371/journal.ppat.1002449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Giese A, Brown DR, Groschup MH et al (1998) Role of microglia in neuronal cell death in prion disease. Brain Pathol 8:449–457. https://doi.org/10.1111/j.1750-3639.1998.tb00167.x

    Article  CAS  PubMed  Google Scholar 

  101. Muhleisen H, Gehrmann J, Meyermann R (1995) Reactive microgIia in Creutzfeldt-Jakob disease. Neuropathol Appl Neurobiol 21:505–517. https://doi.org/10.1111/j.1365-2990.1995.tb01097.x

    Article  CAS  PubMed  Google Scholar 

  102. Sasaki A, Hirato J, Nakazato Y (1993) Immunohistochemical study of microglia in the Creutzfeldt-Jakob diseased brain. Acta Neuropathol 86:337–344. https://doi.org/10.1007/BF00369445

    Article  CAS  PubMed  Google Scholar 

  103. Vidal E, Márquez M, Tortosa R et al (2006) Immunohistochemical approach to the pathogenesis of bovine spongiform encephalopathy in its early stages. J Virol Methods 134:15–29. https://doi.org/10.1016/j.jviromet.2005.11.010

    Article  CAS  PubMed  Google Scholar 

  104. Miyazono M, Kitamoto T, Iwaki T, Tateishi J (1992) Colocalization of prion protein and β protein in the same amyloid plaques in patients with Gerstmann-Sträussler Syndrome. Acta Neuropathol 83:333–339. https://doi.org/10.1007/BF00713522

    Article  CAS  PubMed  Google Scholar 

  105. Vincenti JE, Murphy L, Grabert K et al (2016) Defining the microglia response during the time course of chronic neurodegeneration. J Virol 90:3003–3017. https://doi.org/10.1128/jvi.02613-15

    Article  CAS  PubMed Central  Google Scholar 

  106. Gomez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33:2481–2493. https://doi.org/10.1523/JNEUROSCI.4440-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Williams AE, Lawson LJ, Perry VH, Fraser H (1994) Characterization of the microglial response in murine scrapie. Neuropathol Appl Neurobiol 20:47–55. https://doi.org/10.1111/j.1365-2990.1994.tb00956.x

    Article  CAS  PubMed  Google Scholar 

  108. Hay B, Prusiner SB, Lingappa VR (1987) Evidence for a secretory form of the cellular prion protein. Biochemistry 26:8110–8115. https://doi.org/10.1021/bi00399a014

    Article  CAS  PubMed  Google Scholar 

  109. Gatti JL, Métayer S, Moudjou M et al (2002) Prion protein is secreted in soluble forms in the epididymal fluid and proteolytically processed and transported in seminal plasma. Biol Reprod 67:393–400. https://doi.org/10.1095/biolreprod67.2.393

    Article  CAS  PubMed  Google Scholar 

  110. Robertson C, Booth SA, Beniac DR et al (2006) Cellular prion protein is released on exosomes from activated platelets. Blood 107:3907–3911. https://doi.org/10.1182/blood-2005-02-0802

    Article  CAS  PubMed  Google Scholar 

  111. Bignon Y, Poindessous V, Lazareth H et al (2020) The cellular prion protein is a stress protein secreted by renal tubular cells and a urinary marker of kidney injury. Cell Death Dis 11:243. https://doi.org/10.1038/s41419-020-2430-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vella L, Sharples R, Lawson V et al (2007) Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 211:582–590. https://doi.org/10.1002/path.2145

    Article  CAS  PubMed  Google Scholar 

  113. Altmeppen HC, Prox J, Puig B et al (2011) Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo. Mol Neurodegener 6:36. https://doi.org/10.1186/1750-1326-6-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Parkin ET, Watt NT, Turner AJ, Hooper NM (2004) Dual mechanisms for shedding of the cellular prion protein. J Biol Chem 279:11170–11178. https://doi.org/10.1074/jbc.M312105200

    Article  CAS  PubMed  Google Scholar 

  115. Yáñez-Mó M, Siljander PRM, Andreu Z et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066. https://doi.org/10.3402/jev.v4.27066

    Article  PubMed  Google Scholar 

  116. Krämer-Albers E-M, Hill AF (2016) Extracellular vesicles: interneural shuttles of complex messages. Curr Opin Neurobiol 39:101–107. https://doi.org/10.1016/j.conb.2016.04.016

    Article  CAS  PubMed  Google Scholar 

  117. György B, Szabó TG, Pásztói M et al (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688. https://doi.org/10.1007/s00018-011-0689-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Quek C, Hill AF (2017) The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun 483:1178–1186. https://doi.org/10.1016/j.bbrc.2016.09.090

    Article  CAS  PubMed  Google Scholar 

  119. Fevrier B, Vilette D, Archer F et al (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci 101:9683–9688. https://doi.org/10.1073/pnas.0308413101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Leng B, Sun H, Zhao J et al (2020) Plasma exosomal prion protein levels are correlated with cognitive decline in PD patients. Neurosci Lett 723:134866. https://doi.org/10.1016/j.neulet.2020.134866

    Article  CAS  PubMed  Google Scholar 

  121. Dias MVS, Teixeira BL, Rodrigues BR et al (2016) PRNP/prion protein regulates the secretion of exosomes modulating CAV1/caveolin-1-suppressed autophagy. Autophagy 12:2113–2128. https://doi.org/10.1080/15548627.2016.1226735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Abdulrahman BA, Abdelaziz DH, Schatzl HM (2018) Autophagy regulates exosomal release of prions in neuronal cells. J Biol Chem 293:8956–8968. https://doi.org/10.1074/jbc.RA117.000713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Barbieri G, Palumbo S, Gabrusiewicz K et al (2011) Silencing of cellular prion protein (PrPc) expression by DNA-antisense oligonucleotides induces autophagy-dependent cell death in glioma cells. Autophagy 7:840–853. https://doi.org/10.4161/auto.7.8.15615

    Article  CAS  PubMed  Google Scholar 

  124. Ryskalin L, Busceti CL, Biagioni F et al (2019) Prion protein in glioblastoma multiforme. Int J Mol Sci 20:1–15

    Google Scholar 

  125. Provenzano L, Ryan Y, Hilton DA et al (2017) Cellular prion protein (PrP C) in the development of Merlin-deficient tumours. Oncogene 36:6132–6142. https://doi.org/10.1038/onc.2017.200

    Article  CAS  PubMed  Google Scholar 

  126. Corsaro A, Bajetto A, Thellung S et al (2016) Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells. Oncotarget 7:38638–38657. https://doi.org/10.18632/oncotarget.9575

  127. Iglesia RP, Prado MB, Cruz L et al (2017) Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells. Stem Cell Res Ther 8:76. https://doi.org/10.1186/s13287-017-0518-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee JH, Yun CW, Han YS et al (2018) Melatonin and 5-fluorouracil co-suppress colon cancer stem cells by regulating cellular prion protein-Oct4 axis. J Pineal Res 65:e12519. https://doi.org/10.1111/jpi.12519

    Article  CAS  PubMed  Google Scholar 

  129. Du L, Rao G, Wang H et al (2013) CD44-positive cancer stem cells expressing cellular prion protein contribute to metastatic capacity in colorectal cancer. Cancer Res 73:2682–2694. https://doi.org/10.1158/0008-5472.CAN-12-3759

    Article  CAS  PubMed  Google Scholar 

  130. Lin SC, Lin CH, Shih NC et al (2020) Cellular prion protein transcriptionally regulated by NFIL3 enhances lung cancer cell lamellipodium formation and migration through JNK signaling. Oncogene 39:385–398. https://doi.org/10.1038/s41388-019-0994-0

    Article  CAS  PubMed  Google Scholar 

  131. Keniry M, Pires MM, Mense S et al (2013) Survival factor NFIL3 restricts FOXO-induced gene expression in cancer. Genes Dev 27:916–927. https://doi.org/10.1101/gad.214049.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Le Corre D, Ghazi A, Balogoun R et al (2019) The cellular prion protein controls the mesenchymal-like molecular subtype and predicts disease outcome in colorectal cancer. EBioMedicine 46:94–104. https://doi.org/10.1016/j.ebiom.2019.07.036

    Article  PubMed  PubMed Central  Google Scholar 

  133. de Lacerda TCS, Costa-Silva B, Giudice FS et al (2016) Prion protein binding to HOP modulates the migration and invasion of colorectal cancer cells. Clin Exp Metastasis 33:441–451. https://doi.org/10.1007/s10585-016-9788-8

    Article  CAS  PubMed  Google Scholar 

  134. Ke J, Wu G, Zhang J et al (2020) Melanoma migration is promoted by prion protein via Akt-hsp27 signaling axis. Biochem Biophys Res Commun 523:375–381. https://doi.org/10.1016/j.bbrc.2019.12.042

    Article  CAS  PubMed  Google Scholar 

  135. Guo K, Kang NX, Li Y et al (2009) Regulation of HSP27 on NF-κB pathway activation may be involved in metastatic hepatocellular carcinoma cells apoptosis. BMC Cancer. https://doi.org/10.1186/1471-2407-9-100

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wang JH, Du JP, Li SJ et al (2012) Octarepeat peptides of prion are essential for multidrug resistance in gastric cancer cells. J Dig Dis 13:143–152. https://doi.org/10.1111/j.1751-2980.2011.00563.x

    Article  CAS  PubMed  Google Scholar 

  137. Wang Q, Qian J, Wang F, Ma Z (2012) Cellular prion protein accelerates colorectal cancer metastasis via the Fyn-SP1-SATB1 axis. In: Oncol Rep 2029–2034

  138. Wang W, Wen Q, Luo J et al (2017) Suppression of β-catenin nuclear translocation by CGP57380 decelerates poor progression and potentiates radiation-induced apoptosis in nasopharyngeal carcinoma. Theranostics 7:2134–2149. https://doi.org/10.7150/THNO.17665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Han HJ, Russo J, Kohwi Y, Kohwi-Shigematsu T (2008) SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature 452:187–193. https://doi.org/10.1038/nature06781

    Article  CAS  PubMed  Google Scholar 

  140. Shukla S, Sharma H, Abbas A et al (2013) Upregulation of SATB1 is associated with prostate cancer aggressiveness and disease progression. PLoS ONE. https://doi.org/10.1371/journal.pone.0053527

    Article  PubMed  PubMed Central  Google Scholar 

  141. Yun C-W, Lee J-H, Go G et al (2021) Prion protein of extracellular vesicle regulates the progression of colorectal cancer. Cancers (Basel) 13:2144. https://doi.org/10.3390/cancers13092144

    Article  CAS  Google Scholar 

  142. Liang J, Bai F, Luo G et al (2007) Hypoxia induced overexpression of PrPC in gastric cancer cell lines. Cancer Biol Ther 6:769–774. https://doi.org/10.4161/cbt.6.5.4001

    Article  CAS  PubMed  Google Scholar 

  143. Robey IF, Stephen RM, Brown KS et al (2008) Regulation of the Warburg effect in early-passage breast cancer cells. Neoplasia 10:745–756. https://doi.org/10.1593/neo.07724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sun W, Liu Y, Glazer CA et al (2010) TKTL1 is activated by promoter hypomethylation and contributes to head and neck squamous cell carcinoma carcinogenesis through increased aerobic glycolysis and HIF1 stabilization. Clin Cancer Res 16:857–866. https://doi.org/10.1158/1078-0432.CCR-09-2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Li Q-Q, Sun Y-P, Ruan C-P et al (2011) Cellular prion protein promotes glucose uptake through the Fyn-HIF-2α-Glut1 pathway to support colorectal cancer cell survival. Cancer Sci 102:400–406. https://doi.org/10.1111/j.1349-7006.2010.01811.x

    Article  CAS  PubMed  Google Scholar 

  146. Zhuang D, Liu Y, Mao Y et al (2012) TMZ-induced PrPc/par-4 interaction promotes the survival of human glioma cells. Int J Cancer 130:309–318. https://doi.org/10.1002/ijc.25985

    Article  CAS  PubMed  Google Scholar 

  147. Meslin F, Conforti R, Mazouni C et al (2007) Efficacy of adjuvant chemotherapy according to prion protein expression in patients with estrogen receptor-negative breast cancer. Ann Oncol 18:1793–1798. https://doi.org/10.1093/annonc/mdm406

    Article  CAS  PubMed  Google Scholar 

  148. Cheng Y, Tao L, Xu J et al (2014) CD44/Cellular prion protein interact in multidrug resistant breast cancer cells and correlate with responses to neoadjuvant chemotherapy in breast cancer patients. Mol Carcinog 53:686–697. https://doi.org/10.1002/mc.22021

    Article  CAS  PubMed  Google Scholar 

  149. Wiegmans AP, Saunus JM, Ham S et al (2019) Secreted cellular prion protein binds doxorubicin and correlates with anthracycline resistance in breast cancer. JCI Insight 4:e124092. https://doi.org/10.1172/jci.insight.124092

    Article  PubMed Central  Google Scholar 

  150. Liang J, Ge F, Guo C et al (2009) Inhibition of PI3K/Akt partially leads to the inhibition of PrPC-induced drug resistance in gastric cancer cells. FEBS J 276:685–694. https://doi.org/10.1111/j.1742-4658.2008.06816.x

    Article  CAS  PubMed  Google Scholar 

  151. Du J, Pan Y, Shi Y et al (2005) Overexpression and significance of prion protein in gastric cancer and multidrug-resistant gastric carcinoma cell line SGC7901/ADR. Int J Cancer 113:213–220. https://doi.org/10.1002/ijc.20570

    Article  CAS  PubMed  Google Scholar 

  152. Sakudo A, Lee D, Nishimura T et al (2005) Octapeptide repeat region and N-terminal half of hydrophobic region of prion protein (PrP) mediate PrP-dependent activation of superoxide dismutase. Biochem Biophys Res Commun 326:600–606. https://doi.org/10.1016/j.bbrc.2004.11.092

    Article  CAS  PubMed  Google Scholar 

  153. Ju H-Q, Gocho T, Aguilar M et al (2015) Mechanisms of overcoming intrinsic resistance to gemcitabine in pancreatic ductal adenocarcinoma through the redox modulation. Mol Cancer Ther 14:788–798. https://doi.org/10.1158/1535-7163.MCT-14-0420

    Article  CAS  PubMed  Google Scholar 

  154. Luo G, Wang W, Wu Q et al (2017) MGr1-Antigen/37 kDa laminin receptor precursor promotes cellular prion protein induced multi-drug-resistance of gastric cancer. Oncotarget 8:71630–71641. https://doi.org/10.18632/oncotarget.17795

  155. Bernardino-Sgherri J, Siberchicot C, Auvré F et al (2021) Tumor resistance to radiotherapy is triggered by an ATM/TAK1-dependent-increased expression of the cellular prion protein. Oncogene 40:3460–3469. https://doi.org/10.1038/s41388-021-01746-0

    Article  CAS  PubMed  Google Scholar 

  156. Cha S, Sin MJ, Kim MJ et al (2021) Involvement of cellular prion protein in invasion and metastasis of lung cancer by inducing treg cell development. Biomolecules 11:1–12. https://doi.org/10.3390/biom11020285

    Article  CAS  Google Scholar 

  157. Tang Z, Ma J, Zhang W et al (2016) The role of prion protein expression in predicting gastric cancer prognosis. J Cancer 7:984–990. https://doi.org/10.7150/jca.14237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. McDonald R (1989) Modern biological theories of aging. J Nutr 119:952–953. https://doi.org/10.1093/jn/119.6.952

    Article  Google Scholar 

  159. Goh AX-H, Li C, Sy M-S, Wong B-S (2007) Altered prion protein glycosylation in the aging mouse brain. J Neurochem 100:841–854. https://doi.org/10.1111/j.1471-4159.2006.04268.x

    Article  CAS  PubMed  Google Scholar 

  160. Williams WM, Stadtman ER, Moskovitz J (2004) Ageing and exposure to oxidative stress in vivo differentially affect cellular levels of PrPc in mouse cerebral microvessels and brain parenchyma. Neuropathol Appl Neurobiol 30:161–168. https://doi.org/10.1111/j.1365-2990.2003.00523.x

    Article  CAS  PubMed  Google Scholar 

  161. Brown DR, Clive C, Haswell SJ (2001) Antioxidant activity related to copper binding of native prion protein. J Neurochem 76:69–76. https://doi.org/10.1046/j.1471-4159.2001.00009.x

    Article  CAS  PubMed  Google Scholar 

  162. Brown DR, Wong B-S, Hafiz F et al (1999) Normal prion protein has an activity like that of superoxide dismutase. Biochem J 344:1. https://doi.org/10.1042/0264-6021:3440001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gasperini L, Meneghetti E, Legname G, Benetti F (2016) In absence of the cellular prion protein, alterations in copper metabolism and copper-dependent oxidase activity affect iron distribution. Front Neurosci 10:437. https://doi.org/10.3389/fnins.2016.00437

    Article  PubMed  PubMed Central  Google Scholar 

  164. Benvegnù S, Gasperini L, Legname G (2011) Aged PrP null mice show defective processing of neuregulins in the peripheral nervous system. Mol Cell Neurosci 47:28–35. https://doi.org/10.1016/j.mcn.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  165. Küffer A, Lakkaraju AKK, Mogha A et al (2016) The prion protein is an agonistic ligand of the G protein-coupled receptor Adgrg6. Nature 536:464–468. https://doi.org/10.1038/nature19312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Feigin VL, Stark BA, Johnson CO et al (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20:795–820. https://doi.org/10.1016/S1474-4422(21)00252-0

    Article  CAS  Google Scholar 

  167. McLennan NF, Brennan PM, McNeill A et al (2004) Prion protein accumulation and neuroprotection in hypoxic brain damage. Am J Pathol 165:227–235. https://doi.org/10.1016/S0002-9440(10)63291-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Doeppner TR, Kaltwasser B, Schlechter J et al (2015) Cellular prion protein promotes post-ischemic neuronal survival, angioneurogenesis and enhances neural progenitor cell homing via proteasome inhibition. Cell Death Dis 6:e2024–e2024. https://doi.org/10.1038/cddis.2015.365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Weise J, Doeppner TR, Müller T et al (2008) Overexpression of cellular prion protein alters postischemic Erk1/2 phosphorylation but not Akt phosphorylation and protects against focal cerebral ischemia. Restor Neurol Neurosci 26:57–64

    CAS  PubMed  Google Scholar 

  170. Jeong J-K, Seo J-S, Moon M-H et al (2012) Hypoxia-inducible factor-1 alpha regulates prion protein expression to protect against neuron cell damage. Neurobiol Aging 33:1006.e1-1006.e10. https://doi.org/10.1016/j.neurobiolaging.2011.09.037

    Article  CAS  Google Scholar 

  171. Schmitz M, Greis C, Ottis P et al (2014) Loss of prion protein leads to age-dependent behavioral abnormalities and changes in cytoskeletal protein expression. Mol Neurobiol 50:923–936

    Article  CAS  Google Scholar 

  172. Rial D, Duarte FS, Xikota JC et al (2009) Cellular prion protein modulates age-related behavioral and neurochemical alterations in mice. Neuroscience 164:896–907. https://doi.org/10.1016/j.neuroscience.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  173. Leighton PLA, Nadolski NJ, Morrill A et al (2018) An ancient conserved role for prion protein in learning and memory. Biol Open 7:bio025734. https://doi.org/10.1242/bio.025734

  174. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. https://doi.org/10.1007/BF00308809

    Article  CAS  PubMed  Google Scholar 

  175. Di Lazzaro V (2018) Emergence of neurophysiological biomarkers of Alzheimer disease. J Neurol Neurosurg Psychiatry 89:1235–1235. https://doi.org/10.1136/jnnp-2018-318867

    Article  PubMed  Google Scholar 

  176. Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer’s disease: An emperor in need of clothes. Nat Neurosci 15:349–357

    Article  CAS  Google Scholar 

  177. Kayed R, Lasagna-Reeves CA (2012) Molecular mechanisms of amyloid oligomers toxicity. J Alzheimer’s Dis 33:S67–S78. https://doi.org/10.3233/JAD-2012-129001

    Article  CAS  Google Scholar 

  178. Haas LT, Kostylev MA, Strittmatter SM (2014) Therapeutic molecules and endogenous ligands regulate the interaction between brain cellular prion protein (PrPC) and metabotropic glutamate receptor 5 (mGluR5). J Biol Chem 289:28460–28477. https://doi.org/10.1074/jbc.M114.584342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Um JW, Nygaard HB, Heiss JK et al (2012) Alzheimer amyloid-Î 2 oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 15:1227–1235. https://doi.org/10.1038/nn.3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Younan ND, Sarell CJ, Davies P et al (2013) The cellular prion protein traps Alzheimer’s Aβ in an oligomeric form and disassembles amyloid fibers. FASEB J 27:1847–1858. https://doi.org/10.1096/fj.12-222588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Pagano K, Galante D, D’Arrigo C et al (2019) Effects of prion protein on Aβ42 and pyroglutamate-modified AβpΕ3-42 oligomerization and toxicity. Mol Neurobiol 56:1957–1971. https://doi.org/10.1007/s12035-018-1202-x

    Article  CAS  PubMed  Google Scholar 

  182. Ulbrich S, Janning P, Seidel R et al (2018) Alterations in the brain interactome of the intrinsically disordered N-terminal domain of the cellular prion protein (PrPC) in Alzheimer’s disease. PLoS ONE 13:1–15. https://doi.org/10.1371/journal.pone.0197659

    Article  CAS  Google Scholar 

  183. Laurén J, Gimbel DA, Nygaard HB et al (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-Β oligomers. Nature 457:1128–1132. https://doi.org/10.1038/nature07761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Madhu P, Mukhopadhyay S (2020) Preferential recruitment of conformationally distinct amyloid-β oligomers by the intrinsically disordered region of the human prion protein. ACS Chem Neurosci 11:86–98. https://doi.org/10.1021/acschemneuro.9b00646

    Article  CAS  PubMed  Google Scholar 

  185. Harris DA, Huber MT, van Dijken P et al (1993) Processing of a cellular prion protein: identification of N- and C-terminal cleavage sites. Biochemistry 32:1009–1016. https://doi.org/10.1021/bi00055a003

    Article  CAS  PubMed  Google Scholar 

  186. Scott-McKean JJ, Surewicz K, Choi JK et al (2016) Soluble prion protein and its N-terminal fragment prevent impairment of synaptic plasticity by Aβ oligomers: implications for novel therapeutic strategy in Alzheimer’s disease. Neurobiol Dis 91:124–131. https://doi.org/10.1016/j.nbd.2016.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Balducci C, Beeg M, Stravalaci M et al (2010) Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci 107:2295–2300. https://doi.org/10.1073/pnas.0911829107

    Article  PubMed  PubMed Central  Google Scholar 

  188. Rial D, Piermartiri TC, Duarte FS et al (2012) Overexpression of cellular prion protein (PrPC) prevents cognitive dysfunction and apoptotic neuronal cell death induced by amyloid-β (Aβ1-40) administration in mice. Neuroscience 215:79–89. https://doi.org/10.1016/j.neuroscience.2012.04.034

    Article  CAS  PubMed  Google Scholar 

  189. Gunther EC, Smith LM, Kostylev MA et al (2019) Rescue of transgenic Alzheimer’s pathophysiology by polymeric cellular prion protein antagonists. Cell Rep 26:145-158.e8. https://doi.org/10.1016/j.celrep.2018.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Chung E, Ji Y, Sun Y et al (2010) Anti-PrPCmonoclonal antibody infusion as a novel treatment for cognitive deficits in an Alzheimer’s disease model mouse. BMC Neurosci 11:130. https://doi.org/10.1186/1471-2202-11-130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Salazar SV, Gallardo C, Kaufman AC et al (2017) Conditional deletion of Prnp rescues behavioral and synaptic deficits after disease onset in transgenic Alzheimer’s disease. J Neurosci 37:9207–9221. https://doi.org/10.1523/JNEUROSCI.0722-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Whitehouse IJ, Jackson C, Turner AJ, Hooper NM (2010) Prion protein is reduced in aging and in sporadic but not in familial Alzheimer’s disease. J Alzheimer’s Dis 22:1023–1031. https://doi.org/10.3233/JAD-2010-101071

    Article  CAS  Google Scholar 

  193. Llorens F, Ansoleaga B, Garcia-Esparcia P et al (2013) PrP mRNa and protein expression in brain and PrPc in CSF in Creutzfeldt-Jakob disease MM1 and VV2. Prion 7:383–393. https://doi.org/10.4161/pri.26416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kessels HW, Nguyen LN, Nabavi S, Malinow R (2010) The prion protein as a receptor for amyloid-β. Nature 466:E3–E4. https://doi.org/10.1038/nature09217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Calella AM, Farinelli M, Nuvolone M et al (2010) Prion protein and Aβ-related synaptic toxicity impairment. EMBO Mol Med 2:306–314. https://doi.org/10.1002/emmm.201000082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Avila J, Lucas JJ, Pérez M, Hernández F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84:361–384

    Article  CAS  Google Scholar 

  197. Ondrejcak T, Klyubin I, Corbett GT et al (2018) Cellular prion protein mediates the disruption of hippocampal synaptic plasticity by soluble tau in vivo. J Neurosci 38:10595–10606. https://doi.org/10.1523/JNEUROSCI.1700-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Gomes LA, Hipp SA, Rijal Upadhaya A et al (2019) Aβ-induced acceleration of Alzheimer-related τ-pathology spreading and its association with prion protein. Acta Neuropathol 138:913–941. https://doi.org/10.1007/s00401-019-02053-5

    Article  CAS  PubMed  Google Scholar 

  199. Larson M, Sherman MA, Amar F et al (2012) The complex PrPc-Fyn couples human oligomeric Aβ with pathological tau changes in Alzheimer’s disease. J Neurosci 32:16857–16871. https://doi.org/10.1523/JNEUROSCI.1858-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Vergara C, Ordóñez-Gutiérrez L, Wandosell F et al (2015) Role of PrPC expression in tau protein levels and phosphorylation in Alzheimer’s disease evolution. Mol Neurobiol 51:1206–1220. https://doi.org/10.1007/s12035-014-8793-7

    Article  CAS  PubMed  Google Scholar 

  201. De Cecco E, Celauro L, Vanni S et al (2020) The uptake of tau amyloid fibrils is facilitated by the cellular prion protein and hampers prion propagation in cultured cells. J Neurochem 155:577–591. https://doi.org/10.1111/jnc.15040

    Article  CAS  PubMed  Google Scholar 

  202. Pickett EK, Herrmann AG, McQueen J et al (2019) Amyloid beta and tau cooperate to cause reversible behavioral and transcriptional deficits in a model of Alzheimer’s disease. Cell Rep 29:3592-3604.e5. https://doi.org/10.1016/j.celrep.2019.11.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lidón L, Vergara C, Ferrer I et al (2020) Tau protein as a new regulator of cellular prion protein transcription. Mol Neurobiol 57:4170–4186. https://doi.org/10.1007/s12035-020-02025-x

    Article  CAS  PubMed  Google Scholar 

  204. Schmitz M, Wulf K, Signore SC et al (2013) Impact of the cellular prion protein on amyloid-β and 3PO-tau processing. J Alzheimer’s Dis 38:551–565. https://doi.org/10.3233/JAD-130566

    Article  CAS  Google Scholar 

  205. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535. https://doi.org/10.1016/S1474-4422(06)70471-9

    Article  PubMed  Google Scholar 

  206. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression, and mortality. Neurology 17:427–427. https://doi.org/10.1212/WNL.17.5.427

    Article  CAS  PubMed  Google Scholar 

  207. Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5:235–245. https://doi.org/10.1016/S1474-4422(06)70373-8

    Article  PubMed  Google Scholar 

  208. Rietdijk CD, Perez-Pardo P, Garssen J et al (2017) Exploring Braak’s hypothesis of Parkinson’s disease. Front Neurol 8:37. https://doi.org/10.3389/fneur.2017.00037

    Article  PubMed  PubMed Central  Google Scholar 

  209. Sarnataro D (2018) Attempt to untangle the prion-like misfolding mechanism for neurodegenerative diseases. Int J Mol Sci 19:3081. https://doi.org/10.3390/ijms19103081

    Article  CAS  PubMed Central  Google Scholar 

  210. Li J-Y, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503. https://doi.org/10.1038/nm1746

    Article  CAS  PubMed  Google Scholar 

  211. Ugalde CL, Finkelstein DI, Lawson VA, Hill AF (2016) Pathogenic mechanisms of prion protein, amyloid-β and α-synuclein misfolding: the prion concept and neurotoxicity of protein oligomers. J Neurochem 139:162–180. https://doi.org/10.1111/jnc.13772

    Article  CAS  PubMed  Google Scholar 

  212. Aulić S, Masperone L, Narkiewicz J et al (2017) α-Synuclein amyloids hijack prion protein to gain cell entry, facilitate cell-to-cell spreading and block prion replication. Sci Rep 7:10050. https://doi.org/10.1038/s41598-017-10236-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Ferreira DG, Temido-Ferreira M, Vicente Miranda H et al (2017) α-synuclein interacts with PrPC to induce cognitive impairment through mGluR5 and NMDAR2B. Nat Neurosci 20:1569–1579. https://doi.org/10.1038/nn.4648

    Article  CAS  PubMed  Google Scholar 

  214. Thom T, Schmitz M, Fischer AL et al (2022) Cellular prion protein mediates α-synuclein uptake, localization, and toxicity in vitro and in vivo. Mov Disord 37:39–51. https://doi.org/10.1002/mds.28774

    Article  CAS  PubMed  Google Scholar 

  215. La Vitola P, Beeg M, Balducci C et al (2019) Cellular prion protein neither binds to alpha-synuclein oligomers nor mediates their detrimental effects. Brain 142:249–254. https://doi.org/10.1093/brain/awy318

    Article  PubMed  Google Scholar 

  216. Corbett GT, Wang Z, Hong W et al (2020) PrP is a central player in toxicity mediated by soluble aggregates of neurodegeneration-causing proteins. Acta Neuropathol 139:503–526. https://doi.org/10.1007/s00401-019-02114-9

    Article  CAS  PubMed  Google Scholar 

  217. Nicoll AJ, Panico S, Freir DB et al (2013) Amyloid-β nanotubes are associated with prion protein-dependent synaptotoxicity. Nat Commun 4:2416. https://doi.org/10.1038/ncomms3416

    Article  CAS  PubMed  Google Scholar 

  218. Shirasaka M, Kuwata K, Honda R (2020) α-Synuclein chaperone suppresses nucleation and amyloidogenesis of prion protein. Biochem Biophys Res Commun 521:259–264. https://doi.org/10.1016/j.bbrc.2019.10.120

    Article  CAS  PubMed  Google Scholar 

  219. De Cecco E, Legname G (2018) The role of the prion protein in the internalization of α-synuclein amyloids. Prion 12:23–27. https://doi.org/10.1080/19336896.2017.1423186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Rösener NS, Gremer L, Wördehoff MM et al (2020) Clustering of human prion protein and α-synuclein oligomers requires the prion protein N-terminus. Commun Biol 3:1–12. https://doi.org/10.1038/s42003-020-1085-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sidney Pratt, Canadian, MAT (The Johns Hopkins University), RSAdip—TESL (Cambridge University) for carefully reviewing the English text of this paper.

Funding

This work was supported by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ; grant number: E-26/200–813/2021); Instituto Nacional de Neurociência Translacional (INNT; grant number: 465346/2014–6); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; grant number: 310350/2020–4), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; grant number: 88881.370888/2019–01), and PhD-Program on Morphological Sciences from Universidade Federal do Rio de Janeiro (UFRJ).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Izabella Grimaldi and Flavia Lima. Literature search: Izabella Grimaldi, Ana Clara Campanelli, Felipe Saceanu Leser, José Marcos Janeiro, and Bárbara Gomes da Rosa. Writing—original draft preparation: Izabella Grimaldi, Ana Clara Campanelli, José Marcos Janeiro, Felipe Saceanu Leser, and Bárbara Gomes da Rosa. Writing—review and editing: Izabella Grimaldi, Felipe Saceanu Leser, Luciana Romão,and Flavia Lima. Supervision: Flavia Lima and Luciana Romão. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Flavia Regina Souza Lima.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimaldi, I., Leser, F.S., Janeiro, J.M. et al. The multiple functions of PrPC in physiological, cancer, and neurodegenerative contexts. J Mol Med 100, 1405–1425 (2022). https://doi.org/10.1007/s00109-022-02245-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02245-9

Keywords

Navigation