Skip to main content
Log in

RNA-Seq for the detection of gene fusions in solid tumors: development and validation of the JAX FusionSeq™ 2.0 assay

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Whole transcriptome sequencing (RNA-Seq) has gained prominence for the detection of fusions in solid tumors. Here, we describe the development and validation of an in-house RNA-Seq-based test system (FusionSeq™ 2.0) for the detection of clinically actionable gene fusions, in formalin-fixed paraffin-embedded (FFPE) specimens, using seventy tumor samples with varying fusion status. Conditions were optimized for RNA input of 50 ng, shown to be adequate to call known fusions at as low as 20% neoplastic content. Evaluation of assay performance between FFPE and fresh-frozen (FF) tissues exhibited little to no difference in fusion calling capability. Performance analysis of the assay validation data determined 100% accuracy, sensitivity, specificity, and reproducibility. This clinically developed and validated RNA-Seq-based approach for fusion detection in FPPE samples was shown to be on par if not superior to off-the-shelf commercially offered assays. With gene fusions implicated in a variety of cancer types, offering high-quality, low-cost molecular testing services for FFPE specimens will serve to best benefit the patient and the advancement of precision medicine in molecular oncology.

Key messages

A custom RNA-Seq-based test system (FusionSeq™ 2.0) for the detection of clinically actionable gene fusions,

  • Evaluation of assay performance between FFPE and fresh-frozen (FF) tissues exhibited little to no difference in fusion calling capability.

  • The assay can be performed with low RNA input and neoplastic content.

  • Performance characteristics of the assay validation data determined 100% accuracy, sensitivity, specificity, and reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials (data transparency)

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Gasparini P, Sozzi G, Pierotti MA (2007) The role of chromosomal alterations in human cancer development. J Cell Biochem 102:320–331. https://doi.org/10.1002/jcb.21481

    Article  CAS  PubMed  Google Scholar 

  2. Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7:233–245. https://doi.org/10.1038/nrc2091

    Article  CAS  PubMed  Google Scholar 

  3. Osborne C, Wilson P, Tripathy D (2004) Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist 9:361–377

    Article  CAS  PubMed  Google Scholar 

  4. Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM (1999) The biology of chronic myeloid leukemia. N Engl J Med 341:164–172. https://doi.org/10.1056/NEJM199907153410306

    Article  CAS  PubMed  Google Scholar 

  5. Grunewald TG, Bernard V, Gilardi-Hebenstreit P, Raynal V, Surdez D, Aynaud MM, Mirabeau O, Cidre-Aranaz F, Tirode F, Zaidi S et al (2015) Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA microsatellite. Nat Genet 47:1073–1078. https://doi.org/10.1038/ng.3363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sasaki T, Rodig SJ, Chirieac LR, Janne PA (2010) The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer 46:1773–1780. https://doi.org/10.1016/j.ejca.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, Cao Q, Prensner JR, Rubin MA, Shah RB et al (2008) Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10:177–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dupain C, Harttrampf AC, Boursin Y, Lebeurrier M, Rondof W, Robert-Siegwald G, Khoueiry P, Geoerger B, Massaad-Massade L (2019) Discovery of new fusion transcripts in a cohort of pediatric solid cancers at relapse and relevance for personalized medicine. Mol Ther 27:200–218. https://doi.org/10.1016/j.ymthe.2018.10.022

    Article  CAS  PubMed  Google Scholar 

  9. Pophali PA, Patnaik MM (2016) The role of new tyrosine kinase inhibitors in chronic myeloid leukemia. Cancer J 22:40–50. https://doi.org/10.1097/PPO.0000000000000165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kearney L (2001) Molecular cytogenetics. Best Pract Res Clin Haematol 14:645–669. https://doi.org/10.1053/beha.2001.0159

    Article  CAS  PubMed  Google Scholar 

  11. Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J (1988) Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci USA 85:9138–9142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rowley JD (1973) Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293

    Article  CAS  PubMed  Google Scholar 

  13. Lejeune J, Gautier M, Turpin R (1959) Study of somatic chromosomes from 9 mongoloid children. C R Hebd Seances Acad Sci 248:1721–1722

    CAS  PubMed  Google Scholar 

  14. Duncavage EJ, Abel HJ, Szankasi P, Kelley TW, Pfeifer JD (2012) Targeted next generation sequencing of clinically significant gene mutations and translocations in leukemia. Mod Pathol 25:795–804. https://doi.org/10.1038/modpathol.2012.29

    Article  CAS  PubMed  Google Scholar 

  15. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, Curran JA, Balasubramanian S, Bloom T, Brennan KW et al (2012) Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 18:382–384. https://doi.org/10.1038/nm.2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Benayed R, Offin M, Mullaney K, Sukhadia P, Rios K, Desmeules P, Ptashkin R, Won H, Chang J, Halpenny D et al (2019) High yield of RNA sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden. Clin Cancer Res 25:4712–4722. https://doi.org/10.1158/1078-0432.CCR-19-0225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim J, Kim S, Ko S, In YH, Moon HG, Ahn SK, Kim MK, Lee M, Hwang JH, Ju YS et al (2015) Recurrent fusion transcripts detected by whole-transcriptome sequencing of 120 primary breast cancer samples. Genes Chromosomes Cancer 54:681–691. https://doi.org/10.1002/gcc.22279

    Article  CAS  PubMed  Google Scholar 

  18. Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature 458:97–101. https://doi.org/10.1038/nature07638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang J, White NM, Schmidt HK, Fulton RS, Tomlinson C, Warren WC, Wilson RK, Maher CA (2016) INTEGRATE: gene fusion discovery using whole genome and transcriptome data. Genome Res 26:108–118. https://doi.org/10.1101/gr.186114.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Levin JZ, Berger MF, Adiconis X, Rogov P, Melnikov A, Fennell T, Nusbaum C, Garraway LA, Gnirke A (2009) Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. Genome Biol 10:R115. https://doi.org/10.1186/gb-2009-10-10-r115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haas BJ, Dobin A, Li B, Stransky N, Pochet N, Regev A (2019) Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods. Genome Biol 20:213. https://doi.org/10.1186/s13059-019-1842-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Esteve-Codina A, Arpi O, Martinez-Garcia M, Pineda E, Mallo M, Gut M, Carrato C, Rovira A, Lopez R, Tortosa A et al (2017) A comparison of RNA-Seq results from paired formalin-fixed paraffin-embedded and fresh-frozen glioblastoma tissue samples. PLoS ONE 12:e0170632. https://doi.org/10.1371/journal.pone.0170632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mittempergher L, de Ronde JJ, Nieuwland M, Kerkhoven RM, Simon I, Rutgers EJ, Wessels LF, Van’t Veer LJ (2011) Gene expression profiles from formalin fixed paraffin embedded breast cancer tissue are largely comparable to fresh frozen matched tissue. PLoS ONE 6:e17163. https://doi.org/10.1371/journal.pone.0017163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Selvam P, Kelly K, Hesse AN, Spitzer D, Reddi HV (2019) Evaluating gene fusions in solid tumors - clinical experience using an RNA based 53 gene next-generation sequencing panel. Cancer Genet 233:32–42. https://doi.org/10.1016/j.cancergen.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  25. Morikawa K, Walker SM, Jessup JM, Fidler IJ (1988) In vivo selection of highly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice. Cancer Res 48:1943–1948

    CAS  PubMed  Google Scholar 

  26. Nicorici D, Şatalan M, Edgren H, Kangaspeska S, Murumägi A, Kallioniemi O, Virtanen S, Kilkku O (2014) FusionCatcher – a tool for finding somatic fusion genes in paired-end RNA-sequencing data. bioRxiv 011650. https://doi.org/10.1101/011650

  27. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  28. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA et al (2015) A global reference for human genetic variation. Nature 526:68–74. https://doi.org/10.1038/nature15393

    Article  CAS  Google Scholar 

  31. Lee M, Lee K, Yu N, Jang I, Choi I, Kim P, Jang YE, Kim B, Kim S, Lee B et al (2017) ChimerDB 3.0: an enhanced database for fusion genes from cancer transcriptome and literature data mining. Nucleic Acids Res 45:D784–D789. https://doi.org/10.1093/nar/gkw1083

    Article  CAS  PubMed  Google Scholar 

  32. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, Tsimberidou AM, Vnencak-Jones CL, Wolff DJ, Younes A et al (2017) Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the association for molecular pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 19:4–23. https://doi.org/10.1016/j.jmoldx.2016.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reeser JW, Martin D, Miya J, Kautto EA, Lyon E, Zhu E, Wing MR, Smith A, Reeder M, Samorodnitsky E et al (2017) Validation of a targeted RNA sequencing assay for kinase fusion detection in solid tumors. J Mol Diagn 19:682–696. https://doi.org/10.1016/j.jmoldx.2017.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wimmer I, Troscher AR, Brunner F, Rubino SJ, Bien CG, Weiner HL, Lassmann H, Bauer J (2018) Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh fresh frozen and formalin-fixed paraffin-embedded tissue samples. Sci Rep 8:6351. https://doi.org/10.1038/s41598-018-24781-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Winters JL, Davila JI, McDonald AM, Nair AA, Fadra N, Wehrs RN, Thomas BC, Balcom JR, Jin L, Wu X et al (2018) Development and verification of an RNA sequencing (RNA-Seq) assay for the detection of gene fusions in tumors. J Mol Diagn 20:495–511. https://doi.org/10.1016/j.jmoldx.2018.03.007

    Article  CAS  PubMed  Google Scholar 

  36. Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F, Keir ST, Ji AX, Zoppoli P, Niola F et al (2013) The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet 45:1141–1149. https://doi.org/10.1038/ng.2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhong XY, Holzgreve W, Huang DJ (2008) Isolation of cell-free RNA from maternal plasma. Methods Mol Biol 444:269–273. https://doi.org/10.1007/978-1-59745-066-9_21

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Daniel Bergeron, Harshpreet Chandok, Qian Nie, and Honey V Reddi. The first draft of the manuscript was written by Daniel Bergeron, Harshpreet Chandok, Qian Nie, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Honey V. Reddi.

Ethics declarations

Ethics approval and consent to participate

Not applicable. All human specimens used in this study were obtained from commercial sources as listed in the material and methods section of this manuscript. As such no informed consent or waiver for participation was required. DNA/RNA from PDX animals was obtained from the PDX core. The lab was not involved in the care of animals.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergeron, D., Chandok, H., Nie, Q. et al. RNA-Seq for the detection of gene fusions in solid tumors: development and validation of the JAX FusionSeq™ 2.0 assay. J Mol Med 100, 323–335 (2022). https://doi.org/10.1007/s00109-021-02149-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02149-0

Navigation